Quasi-interpolatory splines based on Schoenberg points
نویسنده
چکیده
By using the Schoenberg points as quasi-interpolatory points, we achieve both generality and economy in contrast to previous sets, which achieve either generality or economy, but not both. The price we pay is a more complicated theory and weaker error bounds, although the order of convergence is unchanged. Applications to numerical integration are given and numerical examples show that the accuracy achieved, using the Schoenberg points, is comparable to that using other sets.
منابع مشابه
Wavelet Transforms Generated by splines
In this paper we design a new family of biorthogonal wavelet transforms that are based on polynomial and discrete splines. The wavelet transforms are constructed via lifting steps, where the prediction and update filters are derived from various types of interpolatory and quasi-interpolatory splines. The transforms use finite and infinite impulse response (IIR) filters and are implemented in a ...
متن کاملTernary interpolatory Subdivision Schemes Originated from splines
A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...
متن کاملComputation of interpolatory splines via triadic subdivision
We present an algorithm for computation of interpolatory splines of arbitrary order at triadic rational points. The algorithm is based on triadic subdivision of splines. Explicit expressions for the subdivision symbols are established. These are rational functions. The computations are implemented by recursive filtering.
متن کاملOn interpolatory divergence-free wavelets
We construct interpolating divergence-free multiwavelets based on cubic Hermite splines. We give characterizations of the relevant function spaces and indicate their use for analyzing experimental data of incompressible flow fields. We also show that the standard interpolatory wavelets, based on the Deslauriers-Dubuc interpolatory scheme or on interpolatory splines, cannot be used to construct ...
متن کاملSplines: a new contribution to wavelet analysis
We present a new approach to the construction of biorthogonal wavelet transforms using polynomial splines. The construction is performed in a “lifting” manner and we use interpolatory, as well as local quasi-interpolatory and smoothing splines as predicting aggregates in this scheme. The transforms contain some scalar control parameters which enable their flexible tuning in either time or frequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 65 شماره
صفحات -
تاریخ انتشار 1996