Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean

نویسندگان

  • Markus A Keller
  • Alexandra V Turchyn
  • Markus Ralser
چکیده

The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have...

متن کامل

Thermodynamic properties of the Calvin cycle and pentose phosphate pathway

The enzymes of the Calvin cycle and pentose phosphate pathway operate in close conjunction with enzymes of glycolysis and gluconeogenesis. The last two metabolic routes are thermodynamically well characterized, but the former two are not. In this work, the thermodynamic properties of the 19 enzymatic reactions of the pentose phosphate pathway and the Calvin cycle, under standard conditions were...

متن کامل

The RNA world and the origin of metabolic enzymes

An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabol...

متن کامل

Glycolysis Is Governed by Growth Regime and Simple Enzyme Regulation in Adherent MDCK Cells

Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively s...

متن کامل

Original article A database of thermodynamic properties of the reactions of glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway

A database of thermodynamic properties is developed, which extends a previous database of glycolysis and tricarboxylic acid cycle by adding the reactions of the pentose phosphate pathway. The raw data and documented estimations of solution properties are made electronically available. The database is determined by estimation of a set of parameters representing species-level free energies of for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014