A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells.

نویسندگان

  • Yin Shen
  • J Alexander Heimel
  • Maarten Kamermans
  • Neal S Peachey
  • Ronald G Gregg
  • Scott Nawy
چکیده

On bipolar cells are connected to photoreceptors via a sign-inverting synapse. At this synapse, glutamate binds to a metabotropic receptor which couples to the closure of a cation-selective transduction channel. The molecular identity of both the receptor and the G protein are known, but the identity of the transduction channel has remained elusive. Here, we show that the transduction channel in mouse rod bipolar cells, a subtype of On bipolar cell, is likely to be a member of the TRP family of channels. To evoke a transduction current, the metabotropic receptor antagonist LY341495 was applied to the dendrites of cells that were bathed in a solution containing the mGluR6 agonists L-AP4 or glutamate. The transduction current was suppressed by ruthenium red and the TRPV1 antagonists capsazepine and SB-366791. Furthermore, focal application of the TRPV1 agonists capsaicin and anandamide evoked a transduction-like current. The capsaicin-evoked and endogenous transduction current displayed prominent outward rectification, a property of the TRPV1 channel. To test the possibility that the transduction channel is TRPV1, we measured rod bipolar cell function in the TRPV1(-/-) mouse. The ERG b-wave, a measure of On bipolar cell function, as well as the transduction current and the response to TRPV1 agonists were normal, arguing against a role for TRPV1. However, ERG measurements from mice lacking TRPM1 receptors, another TRP channel implicated in retinal function, revealed the absence of a b-wave. Our results suggest that a TRP-like channel, possibly TRPM1, is essential for synaptic function in On bipolar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brief Communications A Transient Receptor Potential-Like Channel Mediates Synaptic Transmission in Rod Bipolar Cells

Yin Shen,1,2 J. Alexander Heimel,3 Maarten Kamermans,4,5 Neal S. Peachey,6,7,8 Ronald G. Gregg,9,10 and Scott Nawy1,2 1Departments of Ophthalmology and Visual Sciences and 2Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, 3Molecular Visual Plasticity Group and 4Research Unit Retinal Signal Processing, The Netherlands Institute for Neuro...

متن کامل

The Auxiliary Calcium Channel Subunit α2δ4 Is Required for Axonal Elaboration, Synaptic Transmission, and Wiring of Rod Photoreceptors

Neural circuit wiring relies on selective synapse formation whereby a presynaptic release apparatus is matched with its cognate postsynaptic machinery. At metabotropic synapses, the molecular mechanisms underlying this process are poorly understood. In the mammalian retina, rod photoreceptors form selective contacts with rod ON-bipolar cells by aligning the presynaptic voltage-gated Ca2+ channe...

متن کامل

Compartmentalization of calcium entry pathways in mouse rods.

Photoreceptor metabolism, gene expression and synaptic transmission take place in a highly polarized structure consisting of the ellipsoid, subellipsoid, cell body and synaptic terminal regions. Although calcium, a key second messenger, regulates cellular functions throughout the photoreceptor, the molecular mechanisms underlying local region-specific action of Ca2+ in photoreceptors are poorly...

متن کامل

Synaptic transmission mediated by internal calcium stores in rod photoreceptors.

Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when e...

متن کامل

Response Properties of a Newly Identified Tristratified Narrow Field Amacrine Cell in the Mouse Retina

Amacrine cells were targeted for whole cell recording using two-photon fluorescence microscopy in a transgenic mouse line in which the promoter for dopamine receptor 2 drove expression of green fluorescent protein in a narrow field tristratified amacrine cell (TNAC) that had not been studied previously. Light evoked a multiphasic response that was the sum of hyperpolarizing and depolarization s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 19  شماره 

صفحات  -

تاریخ انتشار 2009