Randomness Complexity of Private Circuits for Multiplication
نویسندگان
چکیده
Many cryptographic algorithms are vulnerable to side channel analysis and several leakage models have been introduced to better understand these flaws. In 2003, Ishai, Sahai and Wagner introduced the d-probing security model, in which an attacker can observe at most d intermediate values during a processing. They also proposed an algorithm that securely performs the multiplication of 2 bits in this model, using only d(d+1)/2 random bits to protect the computation. We study the randomness complexity of multiplication algorithms secure in the d-probing model. We propose several contributions: we provide new theoretical characterizations and constructions, new practical constructions and a new efficient algorithmic tool to analyze the security of such schemes. We start with a theoretical treatment of the subject: we propose an algebraic model for multiplication algorithms and exhibit an algebraic characterization of the security in the d-probing model. Using this characterization, we prove a linear (in d) lower bound and a quasi-linear (non-constructive) upper bound for this randomness cost. Then, we construct a new generic algorithm to perform secure multiplication in the d-probing model that only uses d+ d2/4 random bits. From a practical point of view, we consider the important cases d ≤ 4 that are actually used in current real-life implementations and we build algorithms with a randomness complexity matching our theoretical lower bound for these small-order cases. Finally, still using our algebraic characterization, we provide a new dedicated verification tool, based on information set decoding, which aims at finding attacks on algorithms for fixed order d at a very low computational cost.
منابع مشابه
Private Multiplication over Finite Fields
The notion of privacy in the probing model, introduced by Ishai, Sahai, and Wagner in 2003, is nowadays frequently involved to assess the security of circuits manipulating sensitive information. However, provable security in this model still comes at the cost of a significant overhead both in terms of arithmetic complexity and randomness complexity. In this paper, we deal with this issue for ci...
متن کاملDynamic Private Auctions
In auctions knowing the values of bids allows the auctioneer to manipulate the result of an auction, e.g the winner or the price. Hence, one is interested in hiding these values. A cryptographically-secure protocol for electronic auctions has been presented by Naor, Pinkas, and Summer [NPS99]. The principal topic of this work is to extend the protocol of Naor et al. in several ways with a main ...
متن کاملOn Circuit Complexity Classes and Iterated Matrix Multiplication
OF THE DISSERTATION On Circuit Complexity Classes and Iterated Matrix Multiplication by Fengming Wang Dissertation Director: Eric Allender In this thesis, we study small, yet important, circuit complexity classes within NC, such as ACC and TC. We also investigate the power of a closely related problem called Iterated Matrix Multiplication and its implications in low levels of algebraic complexi...
متن کاملPrivate Constrained PRFs (and More) from LWE
In a constrained PRF, the owner of the PRF key K can generate constrained keys Kf that allow anyone to evaluate the PRF on inputs x that satisfy the predicate f (namely, where f(x) is “true”) but reveal no information about the PRF evaluation on the other inputs. A private constrained PRF goes further by requiring that the constrained key Kf hides the predicate f . Boneh, Kim and Montgomery (EU...
متن کاملAn Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order
Passive physical attacks, like power analysis, pose a serious threat to the security of digital circuits. In this work, we introduce an efficient sidechannel protected Advanced Encryption Standard (AES) hardware design that is completely scalable in terms of protection order. Therefore, we revisit the private circuits scheme of Ishai et al. [13] which is known to be vulnerable to glitches. We d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016