Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid
نویسندگان
چکیده
Baeyer-Villiger monooxygenases (BVMOs) are able to catalyze regiospecific Baeyer-Villiger oxygenation of a variety of cyclic and linear ketones to generate the corresponding lactones and esters, respectively. However, the enzymes are usually difficult to express in a functional form in microbial cells and are rather unstable under process conditions hindering their large-scale applications. Thereby, we investigated engineering of the BVMO from Pseudomonas putida KT2440 and the gene expression system to improve its activity and stability for large-scale biotransformation of ricinoleic acid (1) into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) (3), which can be hydrolyzed into 11-hydroxyundec-9-enoic acid (5) (i.e., a precursor of polyamide-11) and n-heptanoic acid (4). The polyionic tag-based fusion engineering of the BVMO and the use of a synthetic promoter for constitutive enzyme expression allowed the recombinant Escherichia coli expressing the BVMO and the secondary alcohol dehydrogenase of Micrococcus luteus to produce the ester (3) to 85 mM (26.6 g/L) within 5 h. The 5 L scale biotransformation process was then successfully scaled up to a 70 L bioreactor; 3 was produced to over 70 mM (21.9 g/L) in the culture medium 6 h after biotransformation. This study demonstrated that the BVMO-based whole-cell reactions can be applied for large-scale biotransformations.
منابع مشابه
Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity
The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The met...
متن کاملA stepwise approach for the reproducible optimization of PAMO expression in Escherichia coli for whole-cell biocatalysis
BACKGROUND Baeyer-Villiger monooxygenases (BVMOs) represent a group of enzymes of considerable biotechnological relevance as illustrated by their growing use as biocatalyst in a variety of synthetic applications. However, due to their increased use the reproducible expression of BVMOs and other biotechnologically relevant enzymes has become a pressing matter while knowledge about the factors go...
متن کاملCloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase.
Cyclopentanone 1,2-monooxygenase, a flavoprotein produced by Pseudomonas sp. strain NCIMB 9872 upon induction by cyclopentanol or cyclopentanone (M. Griffin and P. W. Trudgill, Biochem. J. 129:595-603, 1972), has been utilized as a biocatalyst in Baeyer-Villiger oxidations. To further explore this biocatalytic potential and to discover new genes, we have cloned and sequenced a 16-kb chromosomal...
متن کاملSubstrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also s...
متن کاملA Carbonate-Forming Baeyer-Villiger Monooxygenase
Despite the remarkable versatility displayed by flavin-dependent monooxygenases (FMOs) in natural product biosynthesis, one notably missing activity is the oxidative generation of carbonate functional groups. We describe a multifunctional Baeyer-Villiger monooxygenase, CcsB, which catalyzes the formation of an in-line carbonate in the macrocyclic portion of cytochalasin E. This study expands th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016