Capacity of vertical VOR adaptation in squirrel monkey.
نویسندگان
چکیده
Squirrel monkeys were trained using newly developed visual-vestibular mismatch paradigms to test the asymmetrical simultaneous induction of vertical vestibuloocular reflex (VOR) gain changes in opposite directions (high and low) either in the upward and downward directions or in response to high- and low-frequency stimuli. The first paradigm consists of sinusoidal head movement [A sin(omegat)] and a full rectified sinusoidal optokinetic stimulus [+/-|A sin(omegat)|], whereas the second paradigm consists of the sum of two sinusoids with different frequencies [A sin(omega(1)t) + A sin(omega(2)t) for head motion and +/-[A sin(omega(1)t) - A sin(omega(2)t)] for the optokinetic stimulus, omega(1) = 0.1pi, omega(2) = 5pi]. The first paradigm induced a half rectified sinusoidal eye-velocity trace, i.e., suppression of the VOR during upward head motion and enhancement during downward head motion or vise versa, whereas the second paradigm induced suppression of the VOR at the low-frequency omega(1) and enhancement at the high-frequency omega(2) or vise versa. After 4 h of exposure to these paradigms, VOR gains of up and down or high and low frequency were modified in opposite directions. We conclude that the monkey vertical VOR system is capable of up-down directionally differential adaptation as well as high-low frequency differential adaptation. However, experiments also suggest that these gain controls are not completely independent because the magnitudes of the gain changes during simultaneous asymmetrical training were less than those achieved by symmetrical training or training in only one of the two components, indicating an influence of the gain controls on each other. These results confine the adaptive site(s) responsible for vertical VOR motor learning to those that can process up and downward or low- and high-frequency head signal separately but not completely independently.
منابع مشابه
Three dimensional eye movements of squirrel monkeys following postrotatory tilt.
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head...
متن کاملAcute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells.
The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys befo...
متن کاملNeuronal substrates of motor learning in the velocity storage generated during optokinetic stimulation in the squirrel monkey.
Chronic motor learning in the vestibuloocular reflex (VOR) results in changes in the gain of this reflex and in other eye movements intimately associated with VOR behavior, e.g., the velocity storage generated by optokinetic stimulation (OKN velocity storage). The aim of the present study was to identify the plastic sites responsible for the change in OKN velocity storage after chronic VOR moto...
متن کاملDynamics of adaptive change in human vestibulo-ocular reflex direction.
Adaptive modification of vestibuloocular reflex (VOR) direction was characterized in humans by recording vertical and horizontal VOR eye movements during horizontal rotations in darkness at frequencies of 0.05 to 1 Hz before and after exposure to a VOR direction adaptation procedure. This procedure paired yaw horizontal vestibular rotation at 0.25 Hz with synchronous pitch vertical optokinetic ...
متن کامل1 2 Vestibulo - Ocular Reflex Adaptation Investigated with Chronic Motion - 3 Modulated Electrical Stimulation of Semicircular Canal Afferents . 4 5 Richard
26 To investigate vestibulo-ocular reflex (VOR) adaptation produced by changes in 27 peripheral vestibular afference, we developed and tested a vestibular “prosthesis” that 28 senses yaw-axis angular head velocity and uses this information to modulate the rate of 29 electrical pulses applied to the lateral canal ampullary nerve. The ability of the brain to 30 adapt the different components of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002