Applicable Mathematics in a Minimal Computational Theory of Sets

نویسندگان

  • Arnon Avron
  • Liron Cohen
چکیده

In previous papers on this project a general static logical framework for formalizing and mechanizing set theories of different strength was suggested, and the power of some predicatively acceptable theories in that framework was explored. In this work we first improve that framework by enriching it with means for coherently extending by definitions its theories, without destroying its static nature or violating any of the principles on which it is based. Then we turn to investigate within the enriched framework the power of the minimal (predicatively acceptable) theory in it that proves the existence of infinite sets. We show that that theory is a computational theory, in the sense that every element of its minimal transitive model is denoted by some of its closed terms. (That model happens to be the second universe in Jensen's hierarchy.) Then we show that already this minimal theory suffices for developing very large portions (if not all) of scientifically applicable mathematics. This requires treating the collection of real numbers as a proper class, that is: a unary predicate which can be introduced in the theory by the static extension method described in the first part of the paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minimal Computational Theory of a Minimal Computational Universe

In [3] a general logical framework for formalizing set theories of different strength was suggested. We here employ that framework, focusing on the exploration of computational theories. That is, theories whose set of closed terms suffices for denoting every concrete set (including infinite ones) that might be needed in applications, as well as for computations with sets. We demonstrate that al...

متن کامل

A computational method to analyze the similarity of biological sequences under uncertainty

In this paper, we propose a new method to analyze the difference and similarity of biological sequences, based on the fuzzy sets theory. Considering the sequence order and some chemical and structural properties, we present a computational method to cluster the biological sequences. By some examples, we show that the new method is relatively easy and we are able to compare the sequences of arbi...

متن کامل

Rough sets theory in site selection decision making for water reservoirs

Rough Sets theory is a mathematical approach for analysis of a vague description of objects presented by a well-known mathematician, Pawlak (1982, 1991). This paper explores the use of Rough Sets theory in site location investigation of buried concrete water reservoirs. Making an appropriate decision in site location can always avoid unnecessary expensive costs which is very important in constr...

متن کامل

Some results on maximal open sets

In this paper, the notion of maximal m-open set is introduced and itsproperties are investigated. Some results about existence of maximal m-open setsare given. Moreover, the relations between maximal m-open sets in an m-spaceand maximal open sets in the corresponding generated topology are considered.Our results are supported by examples and counterexamples.

متن کامل

INTERVAL-VALUED INTUITIONISTIC FUZZY SETS AND SIMILARITY MEASURE

In this paper, the problem of measuring the degree of inclusion and similarity measure for two   interval-valued intuitionistic  fuzzy sets is considered. We propose inclusion and similarity measure by using  order on interval-valued intuitionistic fuzzy sets connected with lexicographical order. Moreover, some properties of inclusion and similarity measure and some correlation, between them an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.02387  شماره 

صفحات  -

تاریخ انتشار 2018