On Eulerian Log-Gamma Integrals and Tornheim–Witten Zeta Functions

نویسندگان

  • David H. Bailey
  • David Borwein
  • Jonathan M. Borwein
چکیده

Stimulated by earlier work by Moll and his coworkers [1], we evaluate various basic log Gamma integrals in terms of partial derivatives of Tornheim– Witten zeta functions and their extensions arising from evaluations of Fourier series. In particular, we fully evaluate

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation and theory of Mordell-Tornheim-Witten sums II

In [7] the current authors, along with the late and much-missed Richard Crandall (1947– 2012), considered generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explored connections with multiple-zeta values (MZVs). This entailed use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function th...

متن کامل

Computation and theory of extended Mordell-Tornheim-Witten sums

We consider some fundamental generalized Mordell–Tornheim–Witten (MTW) zeta-function values along with their derivatives, and explore connections with multiplezeta values (MZVs). To achieve this, we make use of symbolic integration, high precision numerical integration, and some interesting combinatorics and special-function theory. Our original motivation was to represent unresolved constructs...

متن کامل

Generalized Log Sine Integrals and the Mordell-tornheim Zeta Values

We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.

متن کامل

Functional relations and universality for several types of multiple zeta functions

Firstly, we prove a functional relation for the Tornheim double zeta function. Using this functional relation, we obtain simple proofs of some known formulas for special values of Tornheim and Euler-Zagier double zeta functions. Secondly, we obtain functional relations for Witten zeta functions by using a double L-values relation. By these functional relations, we obtain new proofs of known res...

متن کامل

Computation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums

This paper extends tools developed in [10, 8] to study character polylogarithms. These objects are used to compute Mordell-Tornheim-Witten character sums and to explore their connections with multiple-zeta values (MZVs) and with their character analogues [17].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012