Analytical description of transmembrane voltage induced by electric fields on spheroidal cells.
نویسندگان
چکیده
An analytical description of transmembrane voltage induced on spherical cells was determined in the 1950s, and the tools for numerical assessment of transmembrane voltage induced on spheroidal cells were developed in the 1970s. However, it has often been claimed that an analytical description is unattainable for spheroidal cells, while others have asserted that even if attainable, it does not befit the reality due to the nonuniform membrane thickness, which is unrealistic but inevitable in spheroidal geometry. In this paper we show that for all spheroidal cells, membrane thickness is irrelevant to the induced transmembrane voltage under the assumption of a nonconductive membrane, which was also applied in the derivation of Schwan's equation. We then derive the analytical description of transmembrane voltage induced on prolate and oblate spheroidal cells. The final result, which we cast from spheroidal into more familiar spherical coordinates, represents a generalization of Schwan's equation to all spheroidal cells (of which spherical cells are a special case). The obtained expression is easy to apply, and we give a simple example of such application. We conclude the study by analyzing the variation of induced transmembrane voltage as a spheroidal cell is stretched by the field, performing one study at a constant membrane surface area, and another at a constant cell volume.
منابع مشابه
Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation
Introduction: Electroporation is a technique for increasing the permeability of the cell membrane to otherwise non-permeate molecules due to an external electric field. This permeability enhancement is detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the pulse strength threshold. In this study, the variabil...
متن کاملSensitivity of transmembrane voltage induced by applied electric fields-a theoretical analysis
Bioelectrochemistry and Bioenergetics 43 (1997) 285-291 Sensitivity of transmembrane voltage induced by applied electric fields-a theoretical analysis Tadej Kotnik, Feda Bobanovic *, Damijan Miklavcic University of Ljubljana, Faculty of Electrical Engineering, Trzaskn 25, 1000 Ljubljana, Slovenia Received 4 December 1996; revised 20 January 1997 The sensitivity of induced transmembrane voltage ...
متن کاملDielectrophoretic effect of nonuniform electric fields on the protoplast cell
In recent years, dielectrophoresis based microfluidics systems have been used to manipulate colloids, inert particles, and biological microparticles, such as red blood cells, white blood cells, platelets, cancer cells, bacteria, yeast, microorganisms, proteins, DNA, etc. In the current study the governing electric potential equations have been solved in the presence of cell for the purpose of ...
متن کاملNon-uniform distribution of outer hair cell transmembrane potential induced by extracellular electric field.
Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the dir...
متن کاملTime course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application
The paper describes a general method for analysis of time courses of transmembrane voltage induced by time-varying electric fields. Using this method, a response to a wide variety of time-varying fields can be studied. We apply it to different field shapes used for Ž . electroporation and electrofusion: rectangular pulses, trapezoidal pulses approximating rectangular pulses with finite rise tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 79 2 شماره
صفحات -
تاریخ انتشار 2000