Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies.
نویسندگان
چکیده
Acute leukemia with the t(11;17) expressing the PLZF-RARalpha gene fusion is a rare variant of acute promyelocytic leukemia (APL) that has been associated with poor clinical response to all-trans retinoic acid (ATRA) treatment. However, some recent reports have put into question the absolute refractoriness of this leukemia to ATRA. We describe here a patient with PLZF/RARalpha APL who was treated at relapse with ATRA and low-dose hydroxyurea. Complete hematologic remission was obtained through differentiation of leukemic blasts, as proven by morphologic, immunophenophenotypic, and genetic studies carried out in sequential bone marrow samples. Moreover, in vitro studies indicated that blast differentiation was potentiated by the addition of the histone deacetylase inhibitor tricostatin A, but not of hydroxyurea, to ATRA. Our findings indicate that the maturation block may be overcome and terminal differentiation obtained in this leukemia subset and support the view that sensitivity/refractoriness of this form to ATRA should be revisited.
منابع مشابه
DNA recognition by the aberrant retinoic acid receptors implicated in human acute promyelocytic leukemia.
Human acute promyelocytic leukemias (APLs) are associated with chromosomal translocations that replace the NH2 terminus of wild-type retinoic acid receptor (RAR) alpha with portions of the promyelocytic leukemia protein (PML) or promyelocytic leukemia zinc-finger protein (PLZF). The wild-type RARalpha readily forms heterodimers with the retinoid X receptors (RXRs), and these RAR/RXR heterodimer...
متن کاملDistinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha.
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARalpha and one of four fusion partners: PML, PLZF, NPM, and NuMA genes. To study the leukemogenic potential of the fusion genes in vivo, we generated transgenic mice with PLZF-RARalpha and NPM-RARalpha. PLZF-RARalpha transgenic animals developed chronic myeloid leukemia-like phenotypes at an e...
متن کاملThe integrity of the charged pocket in the BTB/POZ domain is essential for the phenotype induced by the leukemia-associated t(11;17) fusion protein PLZF/RARalpha.
Acute myeloid leukemia is characterized by a differentiation block as well as by an increased self-renewal of hematopoietic precursors in the bone marrow. This phenotype is induced by specific acute myeloid leukemia-associated translocations, such as t(15;17) and t(11;17), which involve an identical portion of the retinoic acid receptor alpha (RARalpha) and either the promyelocytic leukemia (PM...
متن کاملThe promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase.
A binding site selection from a CpG island library for the promyelocytic leukemia zinc finger protein (PLZF) identified two high affinity PLZF binding sites. These sequences also bound RARalpha/PLZF, a fusion protein formed in chromosomal translocation t(11;17)(q23;q21) associated with acute promyelocytic leukemia. PLZF bound DNA as a slowly migrating complex with an estimated mol. wt of 600 kD...
متن کاملIn vivo analysis of the role of aberrant histone deacetylase recruitment and RARα blockade in the pathogenesis of acute promyelocytic leukemia
The promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARalpha to inhibit RARalpha function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 100 3 شماره
صفحات -
تاریخ انتشار 2002