Some Hypothesis Tests for the Covariance Matrix When the Dimension Is Large Compared to the Sample Size by Olivier Ledoit

نویسنده

  • MICHAEL WOLF
چکیده

This paper analyzes whether standard covariance matrix tests work when dimensionality is large, and in particular larger than sample size. In the latter case, the singularity of the sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the consistency property and limiting distribution of these tests as dimensionality and sample size go to infinity together, with their ratio converging to a finite nonzero limit. We find that the existing test for sphericity is robust against high dimensionality, but not the test for equality of the covariance matrix to a given matrix. For the latter test, we develop a new correction to the existing test statistic that makes it robust against high dimensionality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Hypothesis Tests for the Covariance Matrix when the Dimension is Large Compared to the Sample Size

This paper analyzes whether standard covariance matrix tests work when dimensionality is large, and in particular larger than sample size. In the latter case, the singularity of the sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the consistency property and limiting ...

متن کامل

Nonlinear Shrinkage Estimation of Large-dimensional Covariance Matrices by Olivier Ledoit

Many statistical applications require an estimate of a covariance matrix and/or its inverse. When the matrix dimension is large compared to the sample size, which happens frequently, the sample covariance matrix is known to perform poorly and may suffer from ill-conditioning. There already exists an extensive literature concerning improved estimators in such situations. In the absence of furthe...

متن کامل

Nonlinear shrinkage estimation of large-dimensional covariance matrices

Many statistical applications require an estimate of a covariance matrix and/or its inverse. Whenthe matrix dimension is large compared to the sample size, which happens frequently, the samplecovariance matrix is known to perform poorly and may suffer from ill-conditioning. There alreadyexists an extensive literature concerning improved estimators in such situations. In the absence offurther kn...

متن کامل

Numerical implementation of the QuEST function

This paper deals with certain estimation problems involving the covariance matrix in large dimensions. Due to the breakdown of finite-dimensional asymptotic theory when the dimension is not negligible with respect to the sample size, it is necessary to resort to an alternative framework known as large-dimensional asymptotics. Recently, Ledoit and Wolf (2015) have proposed an estimator of the ei...

متن کامل

A new test for sphericity of the covariance matrix for high dimensional data

AMS subject classifications: 62H10 62H15 Keywords: Covariance matrix Hypothesis testing High-dimensional data analysis a b s t r a c t In this paper we propose a new test procedure for sphericity of the covariance matrix when the dimensionality, p, exceeds that of the sample size, N = n + 1. Under the assumptions that (A) 0 < trΣ the concentration, a new statistic is developed utilizing the rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002