Characteristics of Biomedical Beta-Type Titanium Alloy Subjected to Coating
نویسندگان
چکیده
Beta-type titanium alloys used in biomedical applications have been developed all over the world. In particular, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) is one of beta-type titanium alloys for biomedical applications that has been developed by the authors in Japan. Although TNTZ is composed of non-toxic elements such as niobium, tantalum, and zirconium, it still lacks bioactivity, which is the ability to form chemical bonds with living bones. The stems that are parts of artificial hip joints, dental implants, etc., which are made of metallic materials, etc. are required to bond strongly with living bones. However, these stems, dental implants etc., cannot form chemical bond with living bones by themselves. The bioactive surface modification of metallic materials by the application of ceramics is effective in improving the biocompatibility of TNTZ. Calcium phosphate ceramics such as hydroxyapatite (Ca10(PO4)6OH2; HAP) and -tricalcium phosphate ( -Ca3(PO4)2; -TCP) possess bioactivity. In this study, the characteristics and morphology of TNTZ coated with a calcium phosphate invert-glass-ceramic (CPIG) layer by dip-coating treatment or with a sodium titanate layer by alkali solution treatment are investigated before and after soaking it in a simulated body fluid (SBF). The bonding strength between a CPIG layer with a thickness of around 5 mm and a specimen surface of TNTZ is around 25MPa. No cracks or exfoliations are observed along the boundary between the CPIG layer and the specimen surface. This is the reason why the difference in the thermal expansion coefficients between CPIG layer and TNTZ reduced due to a compositional gradient zone with a thickness of around 3 mm in CPIG layer. HAP is formed on the entire surface of the TNTZ specimen after soaking it in the SBF for more than 1728 ks. The fatigue properties of TNTZ coated with a CPIG layer are similar to those of as-solutionized TNTZ. A reticulate structure with a thickness of 400 to 800 nm is formed on the TNTZ specimen surface after soaking it in 3 to 10 kmol/m NaOH solution for 86.4 ks and 172.8 ks. HAP is completely formed on the entire surface of the TNTZ specimen when it is soaked in the SBF for 1209.6 ks after being soaked in 5 kmol/m NaOH solution for 172.8 ks. [doi:10.2320/matertrans.MRA2007207]
منابع مشابه
Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application
This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface method...
متن کاملInfluence of substrate metal alloy type on the properties of hydroxyapatite coatings deposited using a novel ambient temperature deposition technique.
Hydroxyapatite (HA) coatings are applied widely to enhance the level of osteointegration onto orthopedic implants. Atmospheric plasma spray (APS) is typically used for the deposition of these coatings; however, HA crystalline changes regularly occur during this high-thermal process. This article reports on the evaluation of a novel low-temperature (<47°C) HA deposition technique, called CoBlast...
متن کاملIon-Doped Silicate Bioceramic Coating of Ti-Based Implant
Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implan...
متن کاملAbrasive waterjet peening: a new method of surface preparation for metal orthopedic implants.
Abrasive waterjet (AWJ) peening is a new mechanical surface treatment process envisioned for use on metal orthopedic implants. The process utilizes an abrasive waterjet to simultaneously texture and work harden the surface of a metal substrate through controlled hydrodynamic erosion. In this study, a titanium alloy (Ti6Al4V) was subjected to AWJ peening over a range of parametric conditions. Th...
متن کاملBiocompatibility of a titanium–aluminum nitride film coating on a dental alloy
The purpose of this investigation was to develop a coating technique and to study the characteristics of titanium–aluminum nitride [(Ti,Al)N] films deposited on a base-metal alloy (Wiron88R) substrate. Titanium–aluminum nitride thin films were deposited on the alloy surface using a reactive radiofrequency sputtering method. The electrochemical properties of three specimens with and without coat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008