Travelling wave analysis in chemotaxis: case of starvation
نویسنده
چکیده
In this paper we investigate the existence of travelling wave solutions for a chemotaxis model under the scenarios of zero growth and constant growth rate. We use Lie symmetry analysis to generate generalized travelling wave solutions, a wider class of solutions than that obtained from the standard ansatz. Unlike previous approaches, we allow for diffusivity and signal degradation. We study the influence of cell growth, diffusivity and signal degradation on the behaviour of the system. We apply realistic boundary conditions to explicitly provide biologically relevant solutions. Our results generalize known results.
منابع مشابه
Travelling waves in hybrid chemotaxis models.
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotacti...
متن کاملShock formation in a chemotaxis model
In this paper, we establish the existence of shock solutions for a simplified version of the Othmer–Stevens chemotaxis model (SIAM J. Appl. Math. 1997; 57:1044–1081). The existence of these shock solutions was suggested by Levine and Sleeman (SIAM J. Appl. Math. 1997; 57:683–730). Here, we consider the general Riemann problem and derive the shock curves in parameterized forms. By studying the t...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملHybrid modelling of individual movement and collective behaviour
Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling method...
متن کاملFamilies of traveling impulses and fronts in some models with cross-diffusion
An analysis of traveling wave solutions of partial differential equation (PDE) systems with cross-diffusion is presented. The systems under study fall in a general class of the classical Keller-Segel models to describe chemotaxis. The analysis is conducted using the theory of the phase plane analysis of the corresponding wave systems without a priory restrictions on the boundary conditions of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016