Bandit Structured Prediction for Neural Sequence-to-Sequence Learning

نویسندگان

  • Julia Kreutzer
  • Artem Sokolov
  • Stefan Riezler
چکیده

Bandit structured prediction describes a stochastic optimization framework where learning is performed from partial feedback. This feedback is received in the form of a task loss evaluation to a predicted output structure, without having access to gold standard structures. We advance this framework by lifting linear bandit learning to neural sequence-to-sequence learning problems using attention-based recurrent neural networks. Furthermore, we show how to incorporate control variates into our learning algorithms for variance reduction and improved generalization. We present an evaluation on a neural machine translation task that shows improvements of up to 5.89 BLEU points for domain adaptation from simulated bandit feedback.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Prediction via Learning to Search under Bandit Feedback

We present an algorithm for structured prediction under online bandit feedback. The learner repeatedly predicts a sequence of actions, generating a structured output. It then observes feedback for that output and no others. We consider two cases: a pure bandit setting in which it only observes a loss, and more fine-grained feedback in which it observes a loss for every action. We find that the ...

متن کامل

Learning Structured Predictors from Bandit Feedback for Interactive NLP

Structured prediction from bandit feedback describes a learning scenario where instead of having access to a gold standard structure, a learner only receives partial feedback in form of the loss value of a predicted structure. We present new learning objectives and algorithms for this interactive scenario, focusing on convergence speed and ease of elicitability of feedback. We present supervise...

متن کامل

Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task

In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...

متن کامل

Stochastic Structured Prediction under Bandit Feedback

Stochastic structured prediction under bandit feedback follows a learning protocol where on each of a sequence of iterations, the learner receives an input, predicts an output structure, and receives partial feedback in form of a task loss evaluation of the predicted structure. We present applications of this learning scenario to convex and non-convex objectives for structured prediction and an...

متن کامل

Variance Reduction for Structured Prediction with Bandit Feedback

We present BanditLOLS, an algorithm for learning to make joint predictions from bandit feedback. The learner repeatedly predicts a sequence of actions, corresponding to either a structured output or control behavior, and observes feedback for that single output and no others. To address this limited feedback, we design a structured cost-estimation strategy for predicting the costs of some unobs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017