Gold nanoparticles on polarizable surfaces as Raman scattering antennas.

نویسندگان

  • Shiuan-Yeh Chen
  • Jack J Mock
  • Ryan T Hill
  • Ashutosh Chilkoti
  • David R Smith
  • Anne A Lazarides
چکیده

Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films. Dark-field scattering images display red shifting of the gold nanoparticle plasmon resonance and doughnut-shaped scattering patterns when particles are deposited on silicon or on a gold film. The imaged radiation patterns and individual particle spectra reveal that the polarizable substrates control both the orientation and brightness of the radiative modes. Comparison with simulation indicates that, in a particle-surface system with a fixed junction width, plasmon band shifts are controlled quantitatively by the permittivity of the wafer or the film. Surface-enhanced resonance Raman scattering (SERRS) spectra and images are collected from cyanine on particles on gold films. SERRS images of the particles on gold films are doughnut-shaped as are their Rayleigh images, indicating that the SERRS is controlled by the polarization of plasmons in the antenna nanostructures. Near-field enhancement and radiative efficiency of the antenna are sufficient to enable Raman scattering cyanines to function as gap field probes. Through collective interpretation of individual particle Rayleigh spectra and spectral simulations, the geometric basis for small observed variations in the wavelength and intensity of plasmon resonant scattering from individual antenna on the three surfaces is explained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Theoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation

   This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...

متن کامل

Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications

We report a surface modification protocol to control nanoporous gold (NPG) disk morphology and tune its plasmonic resonance. Enlarged pore size up to !20 nm within 60 s dealloying time has been achieved by adsorbing halides onto alloy surfaces in-between two dealloying steps. In addition, plasmonic resonance has been significantly red-shifted by up to !258 nm by the surface modification. Furthe...

متن کامل

Facile Synthesis and One-Dimensional Assembly of Cyclodextrin-Capped Gold Nanoparticles and Their Applications in Catalysis and Surface-Enhanced Raman Scattering

Controlled synthesis of Au nanoparticles with adjustable sizes (10-50 nm) and narrow size distributions (<10% in standard deviation) was realized by reducing hydrochloroauric acid with R-cyclodextrin (R-CD) in an alkaline aqueous solution, which was very simple and “green”. It was revealed that a proper pH was essential to the formation of stable dispersions of nonaggregated Au nanoparticles an...

متن کامل

Micro-competition system for Raman quantification of multiple glycans on intact cell surface† †Electronic supplementary information (ESI) available: Experimental details and supplementary figures. See DOI: 10.1039/c5sc01031d Click here for additional data file.

A micro-competition system is designed for simultaneous quantification of multiple glycans on intact cell surfaces, by integrating two-surface–one-molecule competition with surface enhanced Raman scattering (SERS). The micro-competition is achieved among multiple-polysaccharide-coated gold nanostars functionalized silica bubbles, target cells and gold nanoprobes at a micron scale. The gold nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 4 11  شماره 

صفحات  -

تاریخ انتشار 2010