q-Analogs of symmetric function operators
نویسنده
چکیده
For any homomorphism V on the space of symmetric functions, we introduce an operation that creates a q-analog of V . By giving several examples we demonstrate that this quantization occurs naturally within the theory of symmetric functions. In particular, we show that the Hall-Littlewood symmetric functions are formed by taking this q-analog of the Schur symmetric functions and the Macdonald symmetric functions appear by taking the q-analog of the Hall-Littlewood symmetric functions in the parameter t. This relation is then used to derive recurrences on the Macdonald q, t-Kostka coefficients. Résumé. Pour un homomorphisme V sur l’espace des fonctions symétriques, nous présentons une opération qui crée un q-analogue de V . En donnant plusieurs exemples nous démontrons que cette quantization se produit naturellement dans la théorie de fonctions symétriques. En particulier, nous prouvons que les fonctions symétriques de Hall-Littlewood sont constituées en prenant ce q-analogue des fonctions symétriques de Schur et les fonctions symétriques de Macdonald apparaissent en prenant le q-analogue des fonctions symétriques de Hall-Littlewood dans le paramètre t. Cette relation est alors employée pour dériver des récurrence sur les coefficients Macdonald q, t-Kostka.
منابع مشابه
( p,q)-Genuine Baskakov-Durrmeyer operators
In the present article, we propose the $(p,q)$ variant of genuine Baskakov Durrmeyer operators. We obtain moments and establish some direct results, which include weighted approximation and results in terms of modulus of continuity of second order.
متن کاملEigenfunction expansion in the singular case for q-Sturm-Liouville operators
In this work, we prove the existence of a spectral function for singular q-Sturm-Liouville operator. Further, we establish a Parseval equality and expansion formula in eigenfunctions by terms of the spectral function.
متن کاملThe c-function expansion of a basic hypergeometric function associated to root systems
We derive an explicit c-function expansion of a basic hypergeometric function associated to root systems. The basic hypergeometric function in question was constructed as explicit series expansion in symmetric Macdonald polynomials by Cherednik in case the associated twisted affine root system is reduced. Its construction was extended to the nonreduced case by the author. It is a meromorphic We...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 256 شماره
صفحات -
تاریخ انتشار 2002