Operator Preconditioning in Hilbert Space
نویسندگان
چکیده
2010 1 Introduction The numerical solution of linear elliptic partial differential equations consists of two main steps: discretization and iteration, where generally some conjugate gradient method is used for solving the finite element discretization of the problem. However, when for elliptic problems the dis-cretization parameter tends to zero, the required number of iterations for a prescribed tolerance tends to infinity. The remedy is suitable preconditioning. This can rely on the functional analytic background of the corresponding elliptic operators, which means that the preconditioning process
منابع مشابه
Operator preconditioning with efficient applications for nonlinear elliptic problems
Nonlinear elliptic partial differential equations form a class of equations that is widespread in modelling various nonlinear phenomena in science, hence their numerical solution has continuously been a subject of extensive research. Such problems also arise from timedependent nonlinear PDE problems, either on the time levels after the time discretization or as describing steady-states of the p...
متن کاملG-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
متن کاملOperator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$
Frames generalize orthonormal bases and allow representation of all the elements of the space. Frames play significant role in signal and image processing, which leads to many applications in informatics, engineering, medicine, and probability. In this paper, we introduce the concepts of operator frame for the space $End_{mathcal{A}}^{ast}(mathcal{H})$ of all adjointable operator...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010