On-line signature verification using LPC cepstrum and neural networks
نویسندگان
چکیده
An on-line signature verification scheme based on linear prediction coding (LPC) cepstrum and neural networks is proposed. Cepstral coefficients derived from linear predictor coefficients of the writing trajectories are calculated as the features of the signatures. These coefficients are used as inputs to the neural networks. A number of single-output multilayer perceptrons (MLPs), as many as the number of words in the signature, are equipped for each registered person to verify the input signature. If the summation of output values of all MLPs is larger than the verification threshold, the input signature is regarded as a genuine signature; otherwise, the input signature is a forgery. Simulations show that this scheme can detect the genuineness of the input signatures from a test database with an error rate as low as 4%
منابع مشابه
Offline Signature Verification Using Surf Feature Extraction and Neural Networks Approach
In this paper we will evaluate the use of SURF features in handwritten signature verification. For each known writer we will take a sample of three genuine signatures and extract their SURF descriptors. In this paper, off-line signature recognition & verification using neural network is proposed, where the signature is captured and presented to the user in an image format. Signatures are verifi...
متن کاملBiologically inspired speaker verification
Speaker verification is an active research problem that has been addressed using a variety of different classification techniques. However, in general, methods inspired by the human auditory system tend to show better verification performance than other methods. In this thesis three biologically inspired speaker verification algorithms are presented. The first is a vowel-dependent speaker verif...
متن کاملClipped LPC Cepstrum and Its Application to Text-Independent Speaker Identification
A new modification of the LPC cepstrum of speech signal called clipped LPC (CLPC) cepstrum is proposed. In the CLPC cepstrum is reduced the influence of the low level LPC spectrum’s regions. Three LPC cepstrums as features in a textindependent speaker identification task were evaluated using reading text in Bulgarian language collected over noisy telephone lines. These cepstrums are: standard L...
متن کاملOff-line Signature Verification using the Enhanced Modified Direction Feature and Neural-based Classification
Signatures continue to be an important biometric for authenticating the identity of human beings. This paper presents an effective method to perform off-line signature verification using unique structural features extracted from the signature's contour. A novel combination of the Modified Direction Feature (MDF) and additional distinguishing features such as the centroid, surface area, length a...
متن کاملInvestigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 27 1 شماره
صفحات -
تاریخ انتشار 1997