Khovanov homology for signed divides
نویسندگان
چکیده
The purpose of this paper is to interpret polynomial invariants of strongly invertible links in terms of Khovanov homology theory. To a divide, that is a proper generic immersion of a finite number of copies of the unit interval and circles in a 2-disc, one can associate a strongly invertible link in the 3-sphere. This can be generalized to signed divides : divides with + or sign assignment to each crossing point. Conversely, to any link L that is strongly invertible for an involution j , one can associate a signed divide. Two strongly invertible links that are isotopic through an isotopy respecting the involution are called strongly equivalent. Such isotopies give rise to moves on divides. In a previous paper of the author [2], one can find an exhaustive list of moves that preserves strong equivalence, together with a polynomial invariant for these moves, giving therefore an invariant for strong equivalence of the associated strongly invertible links. We prove in this paper that this polynomial can be seen as the graded Euler characteristic of a graded complex of vector spaces. Homology of such complexes is invariant for the moves on divides and so is invariant through strong equivalence of strongly invertible links.
منابع مشابه
Odd Khovanov Homology Is Mutation Invariant
We define a link homology theory that is readily seen to be both isomorphic to reduced odd Khovanov homology and fully determined by data impervious to Conway mutation. This gives an elementary proof that odd Khovanov homology is mutation invariant over Z, and therefore that Khovanov homology is mutation invariant over Z/2Z. We also establish mutation invariance for the entire Ozsváth-Szabó spe...
متن کاملLegendrian links and the spanning tree model for Khovanov homology
The Khovanov homology has led to many interesting new developments in knot theory and related fields. See Lee [4, 5], Ng [6], Plamenevskaya [7] and Rasmussen [8] for examples. It is still very difficult to compute the Khovanov homology in general. Recently, A Champanerkar and I Kofman [2] and, independently, S Wehrli [11] constructed a spanning tree model for the Khovanov homology based on the ...
متن کاملSpanning Trees and Khovanov Homology
The Jones polynomial can be expressed in terms of spanning trees of the graph obtained by checkerboard coloring a knot diagram. We show there exists a complex generated by these spanning trees whose homology is the reduced Khovanov homology. The spanning trees provide a filtration on the reduced Khovanov complex and a spectral sequence that converges to its homology. For alternating links, all ...
متن کاملWhen the Theories Meet: Khovanov Homology as Hochschild Homology of Links
We show that Khovanov homology and Hochschild homology theories share common structure. In fact they overlap: Khovanov homology of a (2, n)-torus link can be interpreted as a Hochschild homology of the algebra underlining the Khovanov homology. In the classical case of Khovanov homology we prove the concrete connection. In the general case of Khovanov-Rozansky, sl(n), homology and their deforma...
متن کاملA Remark on Khovanov Homology and Two-fold Branched Covers
Examples of knots and links distinguished by the total rank of their Khovanov homology but sharing the same two-fold branched cover are given. As a result, Khovanov homology does not yield an invariant of two-fold branched covers. Mutation provides an easy method for producing distinct knots sharing a common two-fold branched cover: The mutation in the branch set corresponds to a trivial surger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009