An investigation of electron-phonon coupling via phonon dispersion measurements in graphite using angle-resolved photoelectron spectroscopy

نویسندگان

  • Shin-ichiro Tanaka
  • Masaharu Matsunami
  • Shin-ichi Kimura
چکیده

Electron-phonon coupling (EPC) plays an important role in solid state physics. Here, we demonstrate an experimental method that enables investigation of the elemental processes of the indirect transition, in which EPC participates in photoexcitation in solids, by resolving the energy and momentum of phonons and electrons simultaneously. For graphite, we used angle-resolved photoelectron spectroscopy to observe electron emission at the Γ-point being scattered from the K-point by a phonon. Energy conservation during phonon emission implies that the step-like structure in the spectrum is near the Fermi level, and angle-resolved measurements revealed phonon dispersions that contribute to EPC because of parallel momentum conservation. The observed phonon branch depends on the photon energy, i.e., the final photoexcitation state; this dependency is partly explained by the selection rule, which is determined by the electron state symmetry for the initial, intermediate, and final states and the phonon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution angle resolved photoemission studies on quasi-particle dynamics in graphite

We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our elect...

متن کامل

Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy.

We present the first angle-resolved photoemission studies of electronic structure in CaC6, a superconducting graphite intercalation compound with T_{c}=11.6 K. We find that, contrary to theoretical models, the electron-phonon coupling on the graphene-derived Fermi sheets with high-frequency graphene-derived phonons is surprisingly strong and anisotropic. The shape of the Fermi surface is found ...

متن کامل

Dispersion of incoherent spectral features in systems with strong electron-phonon coupling

We study (inverse) photoemission from systems with strong coupling of doped carriers to phonons. Using an adiabatic approximation, we develop a method for calculating spectra. This method is particularly simple for systems where the electron-phonon coupling can be neglected in the initial state, e.g., the undoped t-J model. The theory then naturally explains why the electron-phonon coupling jus...

متن کامل

Anisotropic Electron-Phonon Coupling Uncovered By Angle-Resolved Photoemission

Recently there has been an accumulation of experimental evidence in the high temperature superconductors suggesting the relevance of electron-phonon coupling in these materials. These findings challenge some well-held beliefs of what electron-phonon interactions can and cannot do. In this article we review evidence primarily from angleresolved photoemission (ARPES) measurements which point out ...

متن کامل

Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions

There is a great deal of fundamental and practical interest in the possibility of inducing superconductivity in a monolayer of graphene. But while bulk graphite can be made to superconduct when certain metal atoms are intercalated between its graphene sheets, the same has not been achieved in a single layer. Moreover, there is a considerable debate about the precise mechanism of superconductivi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013