Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.
نویسندگان
چکیده
Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles.
منابع مشابه
Published Literature on Woodsmoke and Cancer Summary
In human cell lines, woodsmoke caused more DNA damage than traffic-generated PM per unit mass and was found to induce lung cancer in mice. Oncogene mutations in human patients with advanced non-small cell lung cancer were associated with exposure to wood smoke as well as tobacco smoking. Organic extracts of ambient particulate matter containing substantial quantities of woodsmoke were found t...
متن کاملBiomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health
UNLABELLED Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. METHODS In this paper, we highlight a review of the studies tha...
متن کاملHybrid Buses Costs and Benefits
• Diesel exhaust contains ozone precursors, benzene, arsenic, dioxins, formaldehyde and other toxic substances and is a significant contributor to airborne concentrations of fine particulate matter (PM). Significant health impacts including lung damage and premature death are associated with exposure to fine particulate matter. It can also aggravate conditions such as asthma and bronchitis. Die...
متن کاملCytogenetic evaluation of extractable agents from airborne particulate matter generated in the city of Catania (Italy).
In order to document cytogenetic damage associated with air pollution and, possibly, with health effects in the city of Catania, Sicily (Italy), we analyzed the induction of chromosomal aberrations by extractable agents from airborne particulate matter in a Chinese hamster epithelial liver (CHEL) cells. These cells retain their metabolic competence to activate different classes of promutagens/p...
متن کاملParticulate Matter (PM) Research Centers (1999–2005) and the Role of Interdisciplinary Center-Based Research
OBJECTIVE The U.S. Environmental Protection Agency funded five academic centers in 1999 to address the uncertainties in exposure, toxicity, and health effects of airborne particulate matter (PM) identified in the "Research Priorities for Airborne Particulate Matter" of the National Research Council (NRC). The centers were structured to promote interdisciplinary approaches to address research pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 149 1 شماره
صفحات -
تاریخ انتشار 2016