Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data

نویسندگان

  • Wenyuan Li
  • Ke Gong
  • Qingjiao Li
  • Frank Alber
  • Xianghong Jasmine Zhou
چکیده

UNLABELLED Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. AVAILABILITY AND IMPLEMENTATION The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome analysis Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data

Summary: Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resultin...

متن کامل

NuChart-II: The road to a fast and scalable tool for Hi-C data analysis

Recent advances in molecular biology and bioinformatics techniques brought to an explosion of the information about the spatial organisation of the DNA in the nucleus of a cell. High-throughput molecular biology techniques provide a genome-wide capture of the spatial organization of chromosomes at unprecedented scales, which permit to identify physical interactions between genetic elements loca...

متن کامل

CscoreTool: Fast Hi-C Compartment Analysis at High Resolution.

Summary The genome-wide chromosome conformation capture (Hi-C) has revealed that the eukaryotic genome can be partitioned into A and B compartments that have distinctive chromatin and transcription features. Current Principle Component Analyses (PCA)-based method for the A/B compartment prediction based on Hi-C data requires substantial CPU time and memory. We report the development of a method...

متن کامل

NuChart-II: A Graph-Based Approach for Analysis and Interpretation of Hi-C Data

Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the nucleus, are now considered to be key contributors to the regulation of gene expressions, and important links have been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation Capture (3C) measurements performed with high throughput sequencin...

متن کامل

Hi-WAY: Execution of Scientific Workflows on Hadoop YARN

Scientific workflows provide a means to model, execute, and exchange the increasingly complex analysis pipelines necessary for today’s data-driven science. However, existing scientific workflow management systems (SWfMSs) are often limited to a single workflow language and lack adequate support for large-scale data analysis. On the other hand, current distributed dataflow systems are based on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015