Estimating the parameters of a nonhomogeneous Poisson process with linear rate
نویسندگان
چکیده
Motivated by telecommunication applications, we investigate ways to estimate the parameters of a nonhomogeneous Poisson process with linear rate over a finite interval, based on the number of counts in measurement subintervals. Such a linear arrival-rate function can serve as a component of a piecewise-linear approximation to a general arrival-rate function. We consider ordinary least squares (OLS), iterative weighted least squares (IWLS) and maximum likelihood (ML), all constrained to yield a nonnegative rate function. We prove that ML coincides with IWLS. As a reference point, we also consider the theoretically optimal weighted least squares (TWLS), which is least squares with weights inversely proportional to the variances (which would not be known with data). Overall, ML performs almost as well as TWLS. We describe computer simulations conducted to evaluate these estimation procedures. None of the procedures differ greatly when the rate function is not near 0 at either end, but when the rate function is near 0 at one end, TWLS and ML are significantly more effective than OLS. The number of measurement subintervals (with fixed total interval) makes surprisingly little difference when the rate function is not near 0 at either end. The variances are higher with only two or three subintervals, but there usually is little benefit from going above ten. In contrast, more measurement intervals help TWLS and ML when the rate function is near 0 at one end. We derive explicit formulas for the OLS variances and the asymptotic TWLS variances (as the number of measurement intervals increases), assuming the nonnegativity constraints are not violated. These formulas reveal the statistical precision of the estimators and the influence of the parameters and the method. Knowing how the variance depends on the interval length can help determine how to approximate general arrival-rate functions by piecewise-linear ones. We also develop statistical tests to determine whether the linear Poisson model is appropriate.
منابع مشابه
NPPMLE and NPPSIM: Software for estimating and simulating nonhomogeneous Poisson processes having cyclic behavior
We describe portable software for estimating and simulating a nonhomogeneous Poisson process whose rate function is exponential and may include a polynomial or a sinusoidal component. Program NPPMI_N computes maximumlikelihood estimates of the rate-function parameters from a series of event epochs. Given the rate-function parameters, program NPPSIM simulates the process via a thinning scheme.
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کاملEstimating and simulating Poisson processes having trends or multiple periodicities
We develop and evaluate procedures for estimating and simulating nonhomogeneous Poisson processes having an exponential rate function, where the exponent may include a polynomial component or some trigonometric components or both. Maximum likelihood estimates of the unknown continuous parameters of the rate function are obtained numerically, and the degree of the polynomial rate component is de...
متن کاملNonparametric Estimation of Nonhomogeneous Poisson Processes Using Wavelets
Nonhomogeneous Poisson processes (NHPPs) are frequently used in stochastic simulations to model nonstationary point processes. These NHPP models are often constructed by estimating the rate function from one or more observed realizations of the process. Both parametric and nonparametric models have been developed for the NHPP rate function. The current parametric models require prior knowledge ...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Telecommunication Systems
دوره 5 شماره
صفحات -
تاریخ انتشار 1996