Active control of vibration using a neural network
نویسندگان
چکیده
Feedforward control of sound and vibration using a neural network-based control system is considered, with the aim being to derive an architecture/algorithm combination which is capable of supplanting the commonly used finite impulse response filter/filtered-x least mean square (LMS) linear arrangement for certain nonlinear problems. An adaptive algorithm is derived which enables stable adaptation of the neural controller for this purpose, while providing the capacity to maintain causality within the control scheme. The algorithm is shown to be simply a generalization of the linear filtered-x LMS algorithm. Experiments are undertaken which demonstrate the utility of the proposed arrangement, showing that it performs as well as a linear control system for a linear control problem and better for a nonlinear control problem. The experiments also lead to the conclusion that more work is required to improve the predictability and consistency of the performance before the neural network controller becomes a practical alternative to the current linear feedforward systems.
منابع مشابه
Neural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کاملVibration Suppression of Simply Supported Beam under a Moving Mass using On-Line Neural Network Controller
In this paper, model reference neural network structure is used as a controller for vibration suppression of the Euler–Bernoulli beam under the excitation of moving mass travelling along a vibrating path. The non-dimensional equation of motion the beam acted upon by a moving mass is achieved. A Dirac-delta function is used to describe the position of the moving mass along the beam and its iner...
متن کاملCrack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network
Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...
متن کاملSliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy
This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...
متن کاملVibration Suppression of Adaptive Truss Structure Using Fuzzy Neural Network
An adaptive truss structure with self-learning active vibration control system is developed. A fuzzy-neural network (FNN) controller with adaptive membership functions is presented. The experimental setup of a two-bay truss structure with active members is constructed, and the FNN controller is applied to vibration suppression of the truss. The controller first senses the output of the accelero...
متن کاملA Review on Vibration Control Using Fuzzy Logic and Neural Networking
The computational intelligent technique is frequently used by different authors to design the control part of active vibration control system to minimize the vibration of different structures. The purpose of this review paper is to collect different research papers on vibration control method using modern computation intelligent techniques such as Fuzzy logic technique and neural network techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 6 4 شماره
صفحات -
تاریخ انتشار 1995