Three Colors Suffice: Conflict-Free Coloring of Planar Graphs

نویسندگان

  • Zachary Abel
  • Victor Alvarez
  • Erik D. Demaine
  • Sándor P. Fekete
  • Aman Gour
  • Adam Hesterberg
  • Phillip Keldenich
  • Christian Scheffer
چکیده

A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v’s neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number χCF (G) (the smallest k for which conflict-free k-colorings exist), with a focus on planar graphs. For general graphs, we prove the conflict-free variant of the famous Hadwiger Conjecture: If G does not contain Kk+1 as a minor, then χCF (G) ≤ k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. In addition, we give a complete characterization of the algorithmic/computational complexity of conflict-free coloring. It is NP-complete to decide whether a planar graph has a conflict-free coloring with one color, while for outerplanar graphs, this can be decided in polynomial time. Furthermore, it is NP-complete to decide whether a planar graph has a conflict-free coloring with two colors, while for outerplanar graphs, two colors always suffice. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conflict-Free Coloring of Intersection Graphs

A conflict-free k-coloring of a graph G = (V,E) assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v’s neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well studied in graph theory. Here we study the conflictfree coloring of geometric inter...

متن کامل

Planarization and Acyclic Colorings of Subcubic Claw-Free Graphs

We study methods of planarizing and acyclically coloring claw-free subcubic graphs. We give a polynomial-time algorithm that, given such a graph G, produces an independent set Q of at most n/6 vertices whose removal from G leaves an induced planar subgraph P (in fact, P has treewidth at most four). We further show the stronger result that in polynomial-time a set of at most n/6 edges can be ide...

متن کامل

Acyclic edge-coloring of planar graphs: ∆ colors suffice when ∆ is large

An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph induced by any two color classes is acyclic. The acyclic chromatic index, χa(G), is the smallest number of colors allowing an acyclic edge-coloring of G. Clearly χa(G) ≥ ∆(G) for every graph G. Cohen, Havet, and Müller conjectured that there exists a constant M such that every planar graph with ∆(G) ≥M h...

متن کامل

Acyclic chromatic index of triangle-free 1-planar graphs

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if it can be drawn on the plane such that every edg...

متن کامل

Acyclic edge coloring of planar graphs with Δ colors

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge coloring of every graph G [6]. The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is ∆+12 [2]. In this paper, we study simple planar graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017