Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis
نویسندگان
چکیده
The purpose of content-based image retrieval (CBIR) is to retrieve, from real data stored in a database, information that is relevant to a query. In remote sensing applications, the wealth of spectral information provided by latest-generation (hyperspectral) instruments has quickly introduced the need for parallel CBIR systems able to effectively retrieve features of interest from ever-growing data archives. To address this need, this paper develops a new parallel CBIR system that has been specifically designed to be run on heterogeneous networks of computers (HNOCs). These platforms have soon become a standard computing architecture in remote sensing missions due to the distributed nature of data repositories. The proposed heterogeneous system first extracts an image feature vector able to characterize image content with sub-pixel precision using spectral mixture analysis concepts, and then uses the obtained feature as a search reference. The system is validated using a complex hyperspectral image database, and implemented on several networks of workstations and a Beowulf cluster at NASA’s Goddard Space Flight Center. Our experimental results indicate that the proposed parallel system can efficiently retrieve hyperspectral images from complex image databases by efficiently adapting to the underlying parallel platform on which it is run, regardless of the heterogeneity in the compute nodes and communication links that form such parallel platform. Copyright © 2009 John Wiley & Sons, Ltd.
منابع مشابه
Further results on dissimilarity spaces for hyperspectral images RF-CBIR
Content-Based Image Retrieval (CBIR) systems are powerful search tools in image databases that have been little applied to hyperspectral images. Relevance Feedback (RF) is an iterative process that uses machine learning techniques and user’s feedback to improve the CBIR systems performance. We pursued to expand previous research in hyperspectral CBIR systems built on dissimilarity functions def...
متن کاملAn endmember-based distance for content based hyperspectral image retrieval
We propose a specific content-based image retrieval (CBIR) system for hyperspectral images exploiting its rich spectral information. The CBIR image features are the endmember signatures obtained from the image data by endmember induction algorithms (EIAs). Endmembers correspond to the elementary materials in the scene, so that the pixel spectra can be decomposed into a linear combination of end...
متن کاملTowards a High-performance Distributed Cbir System for Hyperspectral Remote Sensing Data: a Case Study in Jungle Computing
Despite the immense performance of modern computing systems, many scientific problems are of such complexity and scale that a wide variety of computing hardware must be employed concurrently. Moreover, as the required hardware often is not available as part of a single system, scientists often are forced to exploit the computing power of a very diverse distributed system. As many different type...
متن کاملParallel techniques for information extraction from hyperspectral imagery using heterogeneous networks of workstations
Recent advances in space and computer technologies are revolutionizing the way remotely sensed data is collected, managed and interpreted. In particular, NASA is continuously gathering very high-dimensional imagery data from the surface of the Earth with hyperspectral sensors such as the Jet Propulsion Laboratory’s airborne visible-infrared imaging spectrometer (AVIRIS) or the Hyperion imager a...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Concurrency and Computation: Practice and Experience
دوره 22 شماره
صفحات -
تاریخ انتشار 2010