Fracture Mechanics of Fiber-Reinforced Composites

نویسنده

  • E. M. Wu
چکیده

Quantitative understanding of the parameters which control composite fracture is imperative to the implementation of fail safe design and inspection of critical load bearing structures. For isotropic materials, fracture is essentially controlled by a single parameter, e.g., the fracture toughness or the stress-intensity factor. This one dimensional nature lends itself to experimental quantification. However, for anisotropic composites there are at least seven primary controlling parameters: 1) crack length; 2) crack orientation with respect to material axis of anisotropy; 3) nature of applied combined stresses; 4) lamination geometry; 5) deformational and strength responses of the constituent lamina; 6) three kinematically admissible modes of crack extension and 7) crack trajectory. Because of this large number of parameters, experimental quantification by system~tic permutation of the parameters must be realistically viewed as intractable. This paper presents an analytical method of reducing these parameters from seven to two and furnishes experimental observations which lend support to the theoretical model. An experimental p~gram is conducted on fiberglass reinforced epoxy where a centrally notched-crack is subjected to combined loading. Several lamination geometries are tested and by varying the external combined loading, different crack trajectories are predicted by the theoretical model. These predicted trajectories agree well with the experimental observed fracture mode. Such agreement suggests that with further refinement, the general condition of laminated fracture can be characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites

Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...

متن کامل

Statistical Investigation of Parameters Influence on Fracture Toughness of the Glass Fiber Reinforced Composites

The objective of the work was to investigate statistical analysis of fracture toughness of the glass fiber reinforced composites at different stacking sequences, strain rate and crack length. The glass reinforced vinylester composites prepared by hand layup technique with stacking sequences of 0/90, 45/-45 and chopped strand orientations. 3point bending for fracture toughness test for various n...

متن کامل

Investigation of Mechanical Properties of Lithium-Based Geopolymer Composites Reinforced with Basalt Fibers

Recently, geopolymer binders have been considered because of low cost, simple processes for synthesis and many raw materials in nature. Geopolymer with brittle nature does not have high strength and cannot be used alone for structural materials. Therefore, to use in different structures, the composite which is reinforced with fibers such as carbon, glass, basalt, etchasbeen used. In this resear...

متن کامل

Interfaces and interfacial mechanics : influence on the mechanical behavior of ceramic matrix composites (CMC)

The influence of fiberlmatrix interactions on the mechanical behavior of ceramic matrix composites is examined on glass matrix composites and mainly on composites made by chemical vapor infiltration (CVI) of a fiber preform by a SiC matrix. Then the relationships between interfaces and features of the stress-strain behavior are highlighted on microcomposite specimens using experimental data and...

متن کامل

Cohesive fracture model for functionally graded fiber reinforced concrete

a r t i c l e i n f o Keywords: Concrete (E) Fiber reinforced concrete (FRC) (E) Constitutive relationship (C) Cohesive fracture (C) Fracture energy (C) A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total...

متن کامل

Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures

In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017