On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources
نویسندگان
چکیده
Nonholonomic deformations of integrable equations of the KdV hierarchy are studied by using the expansions over the so-called “squared solutions” (squared eigenfunctions). Such deformations are equivalent to a perturbed model with external (self-consistent) sources. In this regard, the KdV6 equation is viewed as a special perturbation of KdV. Applying expansions over the symplectic basis of squared eigenfunctions, the integrability properties of the KdV6 equation are analysed. This allows for a formulation of conditions on the perturbation terms that preserve its integrability. The perturbation corrections to the scattering data and to the corresponding action-angle (canonical) variables are studied. The analysis shows that although many nontrivial solutions of KdV6 can be obtained by the Inverse Scattering Transform (IST), there are solutions that in principle can not be obtained via IST. Thus the equation in general is not completely integrable.
منابع مشابه
Two binary Darboux transformations for the KdV hierarchy with self-consistent sources
Two binary (integral type) Darboux transformations for the KdV hierarchy with self-consistent sources are proposed. In contrast with the Darboux transformation for the KdV hierarchy, one of the two binary Darboux transformations provides non auto-Bäcklund transformation between two n-th KdV equations with self-consistent sources with different degrees. The formula for the m-times repeated binar...
متن کاملIntegrable Rosochatius deformations of higher-order constrained flows and the soliton hierarchy with self-consistent sources
Abstract We propose a systematic method to generalize the integrable Rosochatius deformations for finite dimensional integrable Hamiltonian systems to integrable Rosochatius deformations for infinite dimensional integrable equations. Infinite number of the integrable Rosochatius deformed higher-order constrained flows of some soliton hierarchies, which includes the generalized integrable Hénon-...
متن کاملSelf-Consistent Sources and Conservation Laws for a Super Broer-Kaup-Kupershmidt Equation Hierarchy
Soliton theory has achieved great success during the last decades; it is being applied to mathematics, physics, biology, astrophysics, and other potential fields [1–12]. The diversity and complexity of soliton theory enable investigators to do research from different views, such as Hamiltonian structure, self-consistent sources, conservation laws, and various solutions of soliton equations. In ...
متن کاملAction-Angle Variables for the Gel’fand-Dikii Flows
Using the scattering transform for n order linear scalar operators, the Poisson bracket found by Gel’fand and Dikii, which generalizes the Gardner Poisson bracket for the KdV hierarchy, is computed on the scattering side. Action-angle variables are then constructed. Using this, complete integrability is demonstrated in the strong sense. Real action-angle variables are constructed in the self-ad...
متن کاملOn the Integrability of Stationary and Restricted Flows of the Kdv Hierarchy
A bi–Hamiltonian formulation for stationary flows of the KdV hierarchy is derived in an extended phase space. A map between stationary flows and restricted flows is constructed: in a case it connects an integrable Hénon–Heiles system and the Garnier system. Moreover a new integrability scheme for Hamiltonian systems is proposed, holding in the standard phase space. Date: Dipartimento di Scienze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011