The Improved Hierarchical Clustering Algorithm by a P System with Active Membranes
نویسندگان
چکیده
In this paper an improved hierarchical clustering algorithm by a P system with active membranes is proposed which provides new ideas and methods for cluster analysis. The membrane system has great parallelism. It could reduce the computational time complexity and is suitable for the clustering problem. Firstly an improved hierarchical algorithm was presented which introduced the K-medoids algorithm. The distance of clusters is defined as the distance between the medoids of these clusters instead of the mean distance between them. Secondly a P system with all the rules to solve the above hierarchical algorithm was constructed. The specific P system is designed for the dissimilarity matrix associated with n objects. The computation of the system can obtain one possible classifications in a non-deterministic way. Through example test, the proposed algorithm is appropriate for cluster analysis. This is a new attempt in applications of membrane system. Key-Words: Clustering algorithm; the hierarchical clustering; K-medoids algorithm; Membrane computing; P System; Membrane system
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملROCK clustering algorithm based on the P system with active membranes
The ROCK algorithm plays an important role in data mining and data analysis, which can help people discover knowledge from large amounts of data. In this paper, an improved ROCK algorithm based on the P system with active membranes is constructed. Since the P system has great parallelism, it could reduce the computational time complexity and is suitable for the clustering problem. All the rules...
متن کاملروش نوین خوشهبندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی
Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملA Clustering Based Location-allocation Problem Considering Transportation Costs and Statistical Properties (RESEARCH NOTE)
Cluster analysis is a useful technique in multivariate statistical analysis. Different types of hierarchical cluster analysis and K-means have been used for data analysis in previous studies. However, the K-means algorithm can be improved using some metaheuristics algorithms. In this study, we propose simulated annealing based algorithm for K-means in the clustering analysis which we refer it a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012