ets-2 promotes the activation of a mitochondrial death pathway in Down's syndrome neurons.
نویسندگان
چکیده
Down's syndrome (DS) is characterized by mental retardation and development of Alzheimer's disease (AD). Oxidative stress and mitochondrial dysfunction are both related to neurodegeneration in DS. Several genes in chromosome 21 have been linked to neuronal death, including the transcription factor ets-2. Cortical cultures derived from normal and DS fetal brains were used to study the role of ets-2 in DS neuronal degeneration. ets-2 was expressed in normal human cortical neurons (HCNs) and was markedly upregulated by oxidative stress. When overexpressed in normal HCNs, ets-2 induced a stereotyped sequence of apoptotic changes leading to neuronal death. DS HCNs exhibit intracellular oxidative stress and increased apoptosis after the first week in culture (Busciglio and Yankner, 1995). ets-2 levels were increased in DS HCNs, and, between 7 and 14 d in vitro, DS HCNs showed increased bax, cytoplasmic translocation of cytochrome c and apoptosis inducing factor, and active caspases 3 and 7, consistent with activation of an apoptotic mitochondrial death pathway. Degeneration of DS neurons was reduced by dominant-negative ets-2, suggesting that increased ets-2 expression promotes DS neuronal apoptosis. In the human brain, ets-2 expression was found in neurons and astrocytes. Strong ets-2 immunoreactivity was observed in DS/AD and sporadic AD brains associated with degenerative markers such as bax, intracellular Abeta, and hyperphosphorylated tau. Thus, in DS/AD and sporadic AD brains, converging pathological mechanisms leading to chronic oxidative stress and ets-2 upregulation in susceptible neurons may result in increased vulnerability by promoting the activation of a mitochondrial-dependent proapoptotic pathway of cell death.
منابع مشابه
Control of Mitochondrial Dynamics by Fas-induced Caspase-8 Activation in Hippocampal Neurons
Cells undergo apoptosis mainly via two pathways-the mitochondrial pathway and the cytosolic pathway. It has been well documented that activation of the mitochondrial pathway promotes mitochondrial fragmentation and inhibition of mitochondrial fragmentation partly represses cell death. However, the mitochondrial events following activation of the cytosolic pathway are less understood. In this st...
متن کاملRelationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...
متن کاملAltered Ca2+ signaling and mitochondrial deficiencies in hippocampal neurons of trisomy 16 mice: a model of Down's syndrome.
It has been suggested that augmented nerve cell death in neurodegenerative diseases might result from an impairment of mitochondrial function. To test this hypothesis, we investigated age-dependent changes in neuronal survival and glutamate effects on Ca2+ homeostasis and mitochondrial energy metabolism in cultured hippocampal neurons from diploid and trisomy 16 (Ts16) mice, a model of Down's s...
متن کاملAxon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Her...
متن کاملActivation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by selective degeneration of motor neurons and glial activation. Cell-specific transcriptional regulation induced by oxidative stress may contribute to the survival and activation of astrocytes in the face of motor neuron death. In the present study, we demonstrate an age-dependent increase in Bcl-xL a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2005