Structured Prediction Theory and Voted Risk Minimization
نویسندگان
چکیده
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction problems. Our guarantees are expressed in terms of a data-dependent complexity measure, factor graph complexity, which we show can be estimated from data and bounded in terms of familiar quantities for several commonly used hypothesis sets along with a sparsity measure for features and graphs. Our proof techniques include generalizations of Talagrand’s contraction lemma that can be of independent interest. We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and show that learning is possible even with complex factor graphs. We present new learning bounds for this advanced setting, which we use to design two new algorithms, Voted Conditional Random Field (VCRF) and Voted Structured Boosting (StructBoost). These algorithms can make use of complex features and factor graphs and yet benefit from favorable learning guarantees. We also report the results of experiments with VCRF on several datasets to validate our theory.
منابع مشابه
Structured Prediction Theory Based on Factor Graph Complexity
We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction...
متن کاملOn Structured Prediction Theory with Calibrated Convex Surrogate Losses
We provide novel theoretical insights on structured prediction in the context of efficient convex surrogate loss minimization with consistency guarantees. For any task loss, we construct a convex surrogate that can be optimized via stochastic gradient descent and we prove tight bounds on the so-called “calibration function” relating the excess surrogate risk to the actual risk. In contrast to p...
متن کاملRisk Minimization in Structured Prediction using Orbit Loss
We introduce a new surrogate loss function called orbit loss in the structured prediction framework, which has good theoretical and practical advantages. While the orbit loss is not convex, it has a simple analytical gradient and a simple perceptron-like learning rule. We analyze the new loss theoretically and state a PAC-Bayesian generalization bound. We also prove that the new loss is consist...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملDistributed Block-diagonal Approximation Methods for Regularized Empirical Risk Minimization
Designing distributed algorithms for empirical risk minimization (ERM) has become an active research topic in recent years because of the practical need to deal with the huge volume of data. In this paper, we propose a general framework for training an ERM model via solving its dual problem in parallel over multiple machines. Our method provides a versatile approach for many large-scale machine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.06443 شماره
صفحات -
تاریخ انتشار 2016