Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system.

نویسندگان

  • D K Kang
  • M J Suter
  • C Boudoux
  • P S Yachimski
  • W P Puricelli
  • N S Nishioka
  • M Mino-Kenudson
  • G Y Lauwers
  • B E Bouma
  • G J Tearney
چکیده

Spectrally encoded confocal microscopy and optical frequency domain imaging are two non-contact optical imaging technologies that provide images of tissue cellular and architectural morphology, which are both used for histopathological diagnosis. Although spectrally encoded confocal microscopy has better transverse resolution than optical frequency domain imaging, optical frequency domain imaging can penetrate deeper into tissues, which potentially enables the visualization of different morphologic features. We have developed a co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system and have obtained preliminary images from human oesophageal biopsy samples to compare the capabilities of these imaging techniques for diagnosing oesophageal pathology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid wavelength-swept spectrally encoded confocal microscopy.

Spectrally encoded confocal microscopy (SECM) is a technique that allows confocal microscopy to be performed through the confines of a narrow diameter optical fiber probe. We present a novel scheme for performing SECM in which a rapid wavelength swept source is used. The system allows large field of view images to be acquired at rates up to 30 frames/second. Images of resolution targets and tis...

متن کامل

Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography

Scanning laser ophthalmoscopy (SLO) and spectral domain optical coherence tomography (SDOCT) have become essential clinical diagnostic tools in ophthalmology by allowing for video-rate noninvasive en face and depth-resolved visualization of retinal structure. Current generation multimodal imaging systems that combine both SLO and OCT as a means of image tracking remain complex in their hardware...

متن کامل

Spectrally encoded confocal scanning laser ophthalmoscopy.

We present in vivo human fundus imaging using a fiber-based confocal scanning laser ophthalmoscope (SLO). Spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) utilizes a spectral encoding technique in one dimension, combined with single-axis lateral scanning, to create video-rate reflectivity maps of the fundus. This implementation of the SLO allows for high-contrast high-resoluti...

متن کامل

Evaluation of optical reflectance techniques for imaging of alveolar structure.

Three-dimensional (3-D) visualization of the fine structures within the lung parenchyma could advance our understanding of alveolar physiology and pathophysiology. Current knowledge has been primarily based on histology, but it is a destructive two-dimensional (2-D) technique that is limited by tissue processing artifacts. Micro-CT provides high-resolution three-dimensional (3-D) imaging within...

متن کامل

Spectral-domain spectrally-encoded endoscopy.

Spectrally-encoded miniature endoscopy uses a single optical fiber and wavelength division multiplexing to obtain macroscopic images through miniature, flexible probes. In turn, it has the potential to enable two- and three-dimensional imaging within the body at locations that are currently difficult to access with conventional endoscopes. Here we present a novel detection scheme for spectrally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of microscopy

دوره 239 2  شماره 

صفحات  -

تاریخ انتشار 2010