VEGF-A165 augments erythropoietic development from human embryonic stem cells.
نویسندگان
چکیده
Combinations of hematopoietic cytokines and the ventral mesoderm inducer BMP-4 have recently been shown to augment hematopoietic cell fate of human embryonic stem cells (hESCs) during embryoid body (EB) development. However, factors capable of regulating lineage commitment of hESC-derived hematopoiesis have yet to be reported. Here we show that vascular endothelial growth factor (VEGF-A165) selectively promotes erythropoietic development from hESCs. Effects of VEGF-A165 were dependent on the presence of hematopoietic cytokines and BMP-4, and could be augmented by addition of erythropoietin (EPO). Treatment of human EBs with VEGF-A165 increased the frequency of cells coexpressing CD34 and the VEGF-A165 receptor KDR, as well as cells expressing erythroid markers. Although fetal/adult globins were unaffected, VEGF-A165 induced the expression of embryonic zeta (zeta) and epsilon (epsilon) globins, and was accompanied by expression of the hematopoietic transcription factor SCL/Tal-1. In addition to promoting erythropoietic differentiation from hESCs, the presence of VEGF-A165 enhanced the in vitro self-renewal potential of primitive hematopoietic cells capable of erythroid progenitor capacity. Our study demonstrates a role for VEGF-A165 during erythropoiesis of differentiating hESCs, thereby providing the first evidence for a factor capable of regulating hematopoietic lineage development of hESCs.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملNeuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization.
Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells i...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملLung tumorigenesis induced by human vascular endothelial growth factor (hVEGF)-A165 overexpression in transgenic mice and amelioration of tumor formation by miR-16
Many studies have shown that vascular endothelial growth factor (VEGF), especially the human VEGF-A165 (hVEGF-A165) isoform, is a key proangiogenic factor that is overexpressed in lung cancer. We generated transgenic mice that overexpresses hVEGF-A165 in lung-specific Clara cells to investigate the development of pulmonary adenocarcinoma. In this study, three transgenic mouse strains were produ...
متن کاملVEGF‐A165b protects against proteinuria in a mouse model with progressive depletion of all endogenous VEGF‐A splice isoforms from the kidney
KEY POINTS Progressive depletion of all vascular endothelial growth factor A (VEGF-A) splice isoforms from the kidney results in proteinuria and increased glomerular water permeability, which are both rescued by over-expression of VEGF-A165 b only. VEGF-A165 b rescues the increase in glomerular basement membrane and podocyte slit width, as well as the decrease in sub-podocyte space coverage, pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 103 7 شماره
صفحات -
تاریخ انتشار 2004