An Aerocom Assessment of Black Carbon in Arctic Snow and Sea Ice

نویسندگان

  • C. Jiao
  • M. G. Flanner
  • Y. Balkanski
  • S. E. Bauer
  • N. Bellouin
  • R. B. Skeie
  • S. D. Steenrod
  • P. Stier
  • T. Takemura
  • K. Tsigaridis
  • T. Van Noije
  • K. Zhang
  • T. K. Berntsen
  • H. Bian
  • K. S. Carslaw
  • M. Chin
  • N. De Luca
  • T. Diehl
  • S. J. Ghan
  • T. Iversen
  • A. Kirkevåg
  • D. Koch
  • X. Liu
  • G. W. Mann
  • J. E. Penner
  • G. Pitari
  • M. Schulz
  • Ø. Seland
  • T. van Noije
چکیده

Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 Published by Copernicus Publications on behalf of the European Geosciences Union. 2400 C. Jiao et al.: Black carbon in Arctic snow assessment for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1) now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We inve...

متن کامل

Light-absorbing impurities in Arctic snow

Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content...

متن کامل

Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating...

متن کامل

Arctic climate sensitivity to local black carbon

[1] Recent attention has focused on the impact of black carbon (BC) on Arctic climate. Here, idealized equilibrium climate experiments are conducted to explore the dependence of Arctic temperature change on the altitude and season of local BC forcing. BC residing in the lowest atmospheric layer produces very strong Arctic warming per unit mass and forcing [2.8 ̇ 0.5 K (W m–2)–1] because of low c...

متن کامل

Robinson Actual and insolation - weighted Northern Hemisphere snow cover and sea - ice between 1973 – 2002

Actual and insolation-weighted Northern Hemisphere snow cover and sea ice are binned by latitude bands for the years 1973–2002. Antarctic sea-ice is also analyzed for the years 1980–2002. The use of insolation weighting provides an improved estimate of the radiative feedbacks of snow cover and sea-ice into the atmosphere. One conclusion of our assessment is that while a decrease in both areal a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014