Microvascular and capillary perfusion following glycocalyx degradation.
نویسندگان
چکیده
Systemic parameters and microvascular and capillary hemodynamics were studied in the hamster window chamber model before and after hyaluronan degradation by intravenous injection of Streptomyces hyaluronidase (100 units, 40-50 U/ml plasma). Glycocalyx permeation was estimated using fluorescent markers of different molecular size (40, 70, and 2,000 kDa), and electrical charge. Systemic parameters (blood pressure, heart rate, blood gases) and microhemodynamics (vascular tone, velocity, and blood flow) remained statistically unchanged after injection of hyaluronidase, compared with inactivated hyaluronidase. Conversely, capillary hemodynamics were drastically affected. Functional capillary density, the capillaries perfused with red blood cells (RBCs), decreased by 35%, capillary Hct of the remaining functional capillaries increased from 16 to 27%, and penetration of 70-kDa fluorescent marker increased. Furthermore, plasma-only perfused capillaries statistically increased 30 min after hyaluronidase. The decrease in functional capillary density accounted for an increased RBC flux in the remainder of the capillaries, since the same number of RBCs had to traverse a reduced number of capillaries. Flux balances showed a reduction from baseline of 11% for the RBC flux and 20% for the plasma flux after treatment. These discrepancies are within the margin of error of the techniques used and could be explained by accounting for RBC over-velocity compared with plasma. These findings suggest that the decrease in the glycocalyx leads to capillary perfusion impairments.
منابع مشابه
The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.
Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we ...
متن کاملMetformin and sulodexide restore cardiac microvascular perfusion capacity in diet-induced obese rats
BACKGROUND Disturbances in coronary microcirculatory function, such as the endothelial glycocalyx, are early hallmarks in the development of obesity and insulin resistance. Accordingly, in the present study myocardial microcirculatory perfusion during rest and stress was assessed following metformin or sulodexide therapy in a rat model of diet-induced obesity. Additionally, the effect of degrad...
متن کاملIn vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy.
Hemorrhage is responsible for a large percentage of trauma-related deaths but the mechanisms underlying tissue ischemia are complex and not well understood. Despite the evidence linking glycocalyx degradation and hemorrhagic shock, there is no direct data obtained in vivo showing glycocalyx thickness reduction in skeletal muscle venules after hemorrhage. We hypothesize that damage to the endoth...
متن کاملAcute ischemic injury to the renal microvasculature in human kidney transplantation.
Increased understanding of the pathophysiology of ischemic acute kidney injury in renal transplantation may lead to novel therapies that improve early graft function. Therefore, we studied the renal microcirculation in ischemically injured kidneys from donors after cardiac death (DCD) and in living donor kidneys with minimal ischemia. During transplant surgery, peritubular capillaries were visu...
متن کاملDeeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion
Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 102 6 شماره
صفحات -
تاریخ انتشار 2007