Linkage mechanics and power amplification of the mantis shrimp's strike.

نویسندگان

  • S N Patek
  • B N Nowroozi
  • J E Baio
  • R L Caldwell
  • A P Summers
چکیده

Mantis shrimp (Stomatopoda) generate extremely rapid and forceful predatory strikes through a suite of structural modifications of their raptorial appendages. Here we examine the key morphological and kinematic components of the raptorial strike that amplify the power output of the underlying muscle contractions. Morphological analyses of joint mechanics are integrated with CT scans of mineralization patterns and kinematic analyses toward the goal of understanding the mechanical basis of linkage dynamics and strike performance. We test whether a four-bar linkage mechanism amplifies rotation in this system and find that the rotational amplification is approximately two times the input rotation, thereby amplifying the velocity and acceleration of the strike. The four-bar model is generally supported, although the observed kinematic transmission is lower than predicted by the four-bar model. The results of the morphological, kinematic and mechanical analyses suggest a multi-faceted mechanical system that integrates latches, linkages and lever arms and is powered by multiple sites of cuticular energy storage. Through reorganization of joint architecture and asymmetric distribution of mineralized cuticle, the mantis shrimp's raptorial appendage offers a remarkable example of how structural and mechanical modifications can yield power amplification sufficient to produce speeds and forces at the outer known limits of biological systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elastic energy storage in the mantis shrimp's fast predatory strike.

Storage of elastic energy is key to increasing the power output of many biological systems. Mantis shrimp (Stomatopoda) must store considerable elastic energy prior to their rapid raptorial strikes; however, little is known about the dynamics and location of elastic energy storage structures in this system. We used computed tomography (CT) to visualize the mineralization patterns in Gonodactyla...

متن کامل

Feed-forward motor control of ultrafast, ballistic movements.

To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing s...

متن کامل

Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson.

Resisting impact and avoiding injury are central to survival in situations ranging from the abiotic forces of crashing waves to biotic collisions with aggressive conspecifics. Although impacts and collisions in biology are ubiquitous, most studies focus on the material properties of biological structures under static loading. Here, we examine the mechanical impact properties of the mantis shrim...

متن کامل

Modularity and scaling in fast movements: power amplification in mantis shrimp.

Extremely fast animal actions are accomplished with mechanisms that reduce the duration of movement. This process is known as power amplification. Although many studies have examined the morphology and performance of power-amplified systems, little is known about their development and evolution. Here, we examine scaling and modularity in the powerful predatory appendages of a mantis shrimp, Gon...

متن کامل

Gearing for speed slows the predatory strike of a mantis shrimp.

The geometry of an animal's skeleton governs the transmission of force to its appendages. Joints and rigid elements that create a relatively large output displacement per unit input displacement have been considered to be geared for speed, but the relationship between skeletal geometry and speed is largely untested. The present study explored this subject with experiments and mathematical model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2007