Building Emergent Social Networks by Semantic User Preference Clustering

نویسندگان

  • Iván Cantador
  • Pablo Castells
چکیده

This paper presents a novel approach to automatic semantic social network construction based on semantic user preference clustering. Considering a number of users, each of them with an associated ontology-based profile, we propose a strategy that clusters the concepts of the reference ontology according to user preferences of these concepts, and then determines which clusters are more appropriate to the users. The resultant user clusters can be merged into individual group profiles, automatically defining a semantic social network suitable for use in collaborative and recommendation environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Emergent Social Networks and Group Profiles by Semantic User Preference Clustering

This paper presents a novel approach to automatic semantic social network construction based on semantic user preference clustering. Considering a number of users, each of them with an associated ontology-based profile, we propose a strategy that clusters the concepts of the reference ontology according to user preferences of these concepts, and then determines which clusters are more appropria...

متن کامل

Multi-Layered Ontology-Based User Profiles and Semantic Social Networks for Recommender Systems

This paper describes a strategy that automatically clusters ontologybased user profiles taking into account their common interests for domain concepts. The obtained semantic clusters are used to identify similarities among individuals at multiple semantic preference layers, and to define emergent, layered social networks that can be applied in collaborative and recommender systems. As an applic...

متن کامل

Multilayered Semantic Social Network Modeling by Ontology-Based User Profiles Clustering: Application to Collaborative Filtering

We propose a multilayered semantic social network model that offers different views of common interests underlying a community of people. The applicability of the proposed model to a collaborative filtering system is empirically studied. Starting from a number of ontology-based user profiles and taking into account their common preferences, we automatically cluster the domain concept space. Wit...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006