Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells.

نویسندگان

  • Nelson Varela
  • Alejandra Aranguiz
  • Carlos Lizama
  • Hugo Sepulveda
  • Marcelo Antonelli
  • Roman Thaler
  • Ricardo D Moreno
  • Martin Montecino
  • Gary S Stein
  • Andre J van Wijnen
  • Mario Galindo
چکیده

Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه بیان کمّی فاکتور نسخه‌برداری RUNX2 در تمایز سلول‌های بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید

  Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA).   Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...

متن کامل

Effects of Graphene Quantum Dots on the Osteogenic Differentiation of Stem Cells from Human Endometrial

Background and aim: Cell-therapy is an important science because of using to treatment of critical-sized bone defects. Recent studies in this field suggest that human endometrial derived stem cells can be a great source. On the other hand, graphene and its derivatives, mainly graphene quantum dots (GQDs) have recently attracted much attention as effective factors in differentiating stem cells t...

متن کامل

Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions

With rapidly ageing populations worldwide, the incidence of osteoporosis has reached epidemic proportions. Reactive oxygen species (ROS), a by-product of oxidative stress and ageing, has been thought to induce osteoporosis by inhibiting osteogenic differentiation of mesenchymal stem cells (MSCs). However, specific mechanisms of how ROS results in alterations on MSC differentiation capacity have...

متن کامل

Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2.

During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Run...

متن کامل

CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro‐osteogenic and pro‐inflammatory cues

Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cellular physiology

دوره 231 5  شماره 

صفحات  -

تاریخ انتشار 2016