The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method

نویسندگان

  • Joanna IntHout
  • John PA Ioannidis
  • George F Borm
چکیده

BACKGROUND The DerSimonian and Laird approach (DL) is widely used for random effects meta-analysis, but this often results in inappropriate type I error rates. The method described by Hartung, Knapp, Sidik and Jonkman (HKSJ) is known to perform better when trials of similar size are combined. However evidence in realistic situations, where one trial might be much larger than the other trials, is lacking. We aimed to evaluate the relative performance of the DL and HKSJ methods when studies of different sizes are combined and to develop a simple method to convert DL results to HKSJ results. METHODS We evaluated the performance of the HKSJ versus DL approach in simulated meta-analyses of 2-20 trials with varying sample sizes and between-study heterogeneity, and allowing trials to have various sizes, e.g. 25% of the trials being 10-times larger than the smaller trials. We also compared the number of "positive" (statistically significant at p < 0.05) findings using empirical data of recent meta-analyses with > = 3 studies of interventions from the Cochrane Database of Systematic Reviews. RESULTS The simulations showed that the HKSJ method consistently resulted in more adequate error rates than the DL method. When the significance level was 5%, the HKSJ error rates at most doubled, whereas for DL they could be over 30%. DL, and, far less so, HKSJ had more inflated error rates when the combined studies had unequal sizes and between-study heterogeneity. The empirical data from 689 meta-analyses showed that 25.1% of the significant findings for the DL method were non-significant with the HKSJ method. DL results can be easily converted into HKSJ results. CONCLUSIONS Our simulations showed that the HKSJ method consistently results in more adequate error rates than the DL method, especially when the number of studies is small, and can easily be applied routinely in meta-analyses. Even with the HKSJ method, extra caution is needed when there are = <5 studies of very unequal sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies

BACKGROUND Random-effects meta-analysis is commonly performed by first deriving an estimate of the between-study variation, the heterogeneity, and subsequently using this as the basis for combining results, i.e., for estimating the effect, the figure of primary interest. The heterogeneity variance estimate however is commonly associated with substantial uncertainty, especially in contexts where...

متن کامل

The Hartung‐Knapp modification for random‐effects meta‐analysis: A useful refinement but are there any residual concerns?

The modified method for random-effects meta-analysis, usually attributed to Hartung and Knapp and also proposed by Sidik and Jonkman, is easy to implement and is becoming advocated for general use. Here, we examine a range of potential concerns about the widespread adoption of this method. Motivated by these issues, a variety of different conventions can be adopted when using the modified metho...

متن کامل

Meta‐analysis of two studies in the presence of heterogeneity with applications in rare diseases

Random-effects meta-analyses are used to combine evidence of treatment effects from multiple studies. Since treatment effects may vary across trials due to differences in study characteristics, heterogeneity in treatment effects between studies must be accounted for to achieve valid inference. The standard model for random-effects meta-analysis assumes approximately normal effect estimates and ...

متن کامل

Random effects meta‐analysis: Coverage performance of 95% confidence and prediction intervals following REML estimation

A random effects meta-analysis combines the results of several independent studies to summarise the evidence about a particular measure of interest, such as a treatment effect. The approach allows for unexplained between-study heterogeneity in the true treatment effect by incorporating random study effects about the overall mean. The variance of the mean effect estimate is conventionally calcul...

متن کامل

Mindfulness Meditation for Chronic Pain: Systematic Review and Meta-analysis

BACKGROUND Chronic pain patients increasingly seek treatment through mindfulness meditation. PURPOSE This study aims to synthesize evidence on efficacy and safety of mindfulness meditation interventions for the treatment of chronic pain in adults. METHOD We conducted a systematic review on randomized controlled trials (RCTs) with meta-analyses using the Hartung-Knapp-Sidik-Jonkman method fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014