mBet3p is required for homotypic COPII vesicle tethering in mammalian cells

نویسندگان

  • Sidney Yu
  • Ayano Satoh
  • Marc Pypaert
  • Karl Mullen
  • Jesse C. Hay
  • Susan Ferro-Novick
چکیده

TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show that mammalian Bet3p (mBet3p), which is the most highly conserved TRAPP subunit, resides on the tER and adjacent VTCs. The inactivation of mBet3p results in the accumulation of cargo in membranes that colocalize with the COPII coat. Furthermore, using an assay that reconstitutes VTC biogenesis in vitro, we demonstrate that mBet3p is required for the tethering and fusion of COPII vesicles to each other. Consistent with the proposal that mBet3p is required for VTC biogenesis, we find that ERGIC-53 (VTC marker) and Golgi architecture are disrupted in siRNA-treated mBet3p-depleted cells. These findings imply that the TRAPPI complex is essential for VTC biogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of Sly41 suppresses COPII vesicle–tethering deficiencies by elevating intracellular calcium levels

SLY41 was identified as a multicopy suppressor of loss of Ypt1, a Rab GTPase essential for COPII vesicle tethering at the Golgi complex. SLY41 encodes a polytopic membrane protein with homology to a class of solute transporter proteins, but how overexpression suppresses vesicle-tethering deficiencies is not known. Here we show that Sly41 is efficiently packaged into COPII vesicles and actively ...

متن کامل

Vesicular Calcium Regulates Coat Retention, Fusogenicity, and Size of Pre-Golgi Intermediates

The significance and extent of Ca(2+) regulation of the biosynthetic secretory pathway have been difficult to establish, and our knowledge of regulatory relationships integrating Ca(2+) with vesicle coats and function is rudimentary. Here, we investigated potential roles and mechanisms of luminal Ca(2+) in the early secretory pathway. Specific depletion of luminal Ca(2+) in living normal rat ki...

متن کامل

Mammalian TRAPPIII Complex positively modulates the recruitment of Sec13/31 onto COPII vesicles

The Transport protein particle (TRAPP) complex is a tethering factor for COPII vesicle. Of three forms of TRAPP (TRAPPI, II and III) complexes identified so far, TRAPPIII has been largely considered to play a role in autophagy. While depletion of TRAPPIII specific subunits caused defects in the early secretory pathway and TRAPPIII might interact with components of the COPII vesicle coat, its ex...

متن کامل

Sec24C/D-isoform–specific sorting of the preassembled ER–Golgi Q-SNARE complex

Secretory proteins are exported from the endoplasmic reticulum in COPII vesicles. SNARE proteins-core machinery for membrane fusion-are incorporated into COPII vesicles by direct interaction with Sec24. Here we report a novel mechanism for sorting of the ER-Golgi Q-SNAREs into COPII vesicles. Different mammalian Sec24 isoforms recruit either the R-SNARE Sec22b or the Q-SNAREs Syntaxin5, GS27, a...

متن کامل

The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic

The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 174  شماره 

صفحات  -

تاریخ انتشار 2006