Necessary and Sufficient Conditions for the Schur Harmonic Convexity or Concavity of the Extended Mean Values

نویسندگان

  • WEI-FENG XIA
  • YU-MING CHU
  • GEN-DI WANG
چکیده

In this paper, we prove that the extended values E(r, s;x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if (r, s) ∈ {(r, s) : s ≥ −1, s ≥ r, s+ r + 3 ≥ 0} ∪ {(r, s) : r ≥ −1, r ≥ s, s+r+3 ≥ 0} (or {(r, s) : s ≤ −1, r ≤ −1, s+r+3 ≤ 0}, respectively).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schur Power Convexity of the Daróczy Means

In this paper, the Schur convexity is generalized to Schur f -convexity, which contains the Schur geometrical convexity, harmonic convexity and so on. When f : R+ →R is defined by f (x) = (xm−1)/m if m = 0 and f (x) = lnx if m = 0 , the necessary and sufficient conditions for f -convexity (is called Schur m -power convexity) of Daróczy means are given, which improve, generalize and unify Shi et...

متن کامل

Indices, Convexity and Concavity of Calderón-lozanovskii Spaces

In this article we discuss lattice convexity and concavity of Calderón-Lozanovskii space Eφ , generated by a quasi-Banach space E and an increasing Orlicz function φ. We give estimations of convexity and concavity indices of Eφ in terms of Matuszewska-Orlicz indices of φ as well as convexity and concavity indices of E. In the case when Eφ is a rearrangement invariant space we also provide some ...

متن کامل

THE FUNCTION (bx − ax)/x: LOGARITHMIC CONVEXITY AND APPLICATIONS TO EXTENDED MEAN VALUES

In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.

متن کامل

Schur positivity and the q-log-convexity of the Narayana polynomials

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...

متن کامل

Schur-convexity and Schur-geometrically concavity of Gini means

The monotonicity and the Schur-convexity with parameters (s, t) in R2 for fixed (x, y) and the Schur-convexity and the Schur-geometrically convexity with variables (x, y) in R++ for fixed (s, t) of Gini mean G(r, s;x, y) are discussed. Some new inequalities are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011