Steady State Analysis of Convex Combination of Affine Projection Adaptive Filters
نویسنده
چکیده
The aim of the study is to propose an adaptive algorithm using convex combinational approach to have both fast convergence and less steady state error simultaneously. For this purpose, we have used two affine projection adaptive filters with complementary nature (both in step size and projection order) as the component filters. The first component filter has high projection order and large step size which makes it to have fast convergence at the cost of more steady state error. The second component filter has slow convergence and less steady state error due to the selection of small step size and projection order. Both are combined using convex combiner so as to have best final output with fast convergence and less steady state error. Each of the component filters are updated using their own error signals and stochastic gradient approach is used to update the convex combiner so as to have minimum overall error. By using energy conservation argument, analytical treatment of the combination stage is made in stationary environment. It is found that during initial stage the proposed scheme converges to the fast filter which has good convergence later it converges to either of the two (whichever has less steady state error) and towards the end, the final output converges to slow filter which is superior in lesser steady state error. Experimental results proved that the proposed algorithm has adopted the best features of the component filters.
منابع مشابه
Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کاملAdaptive Convex Combination of APA and ZA-APA algorithms for Sparse System Identification
In general, one often encounters the systems that have sparse impulse response, with time varying system sparsity. Conventional adaptive filters which perform well for identification of non-sparse systems fail to exploit the system sparsity for improving the performance as the sparsity level increases. This paper presents a new approach that uses an adaptive convex combination of Affine Project...
متن کاملA Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms
In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...
متن کاملCombination Scheme of Affine Projection Algorithm Filters with Complementary Order
Abstract—This paper proposes a complementary combination scheme of affine projection algorithm (APA) filters with different order of input regressors. A convex combination provides an interesting way to keep the advantage of APA having different order of input regressors. Consequently, a novel APA which has the rapid convergence and the reduced steady-state error is derived. Experimental result...
متن کاملAn Affine Combination of TVLMS Adaptive Filters for Echo Cancellation
This paper deals with the statistical behaviour of an affine combination of the outputs of two TVLMS adaptive filters that simultaneously adapting the same white Gaussian inputs and it’s cancelling the echoes by system identification. The purpose of the combination is to obtain TVLMS adaptive filters with faster convergence and small steady-state mean-square deviation (MSD). The linear combinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015