Graph-based semi-supervised learning for relational networks

نویسنده

  • Leto Peel
چکیده

We address the problem of semi-supervised learning in relational networks, networks in which nodes are entities and links are the relationships or interactions between them. Typically this problem is confounded with the problem of graph-based semi-supervised learning (GSSL), because both problems represent the data as a graph and predict the missing class labels of nodes. However, not all graphs are created equally. In GSSL a graph is constructed, often from independent data, based on similarity. As such, edges tend to connect instances with the same class label. Relational networks, however, can be more heterogeneous and edges do not always indicate similarity. For instance, instead of links being more likely to connect nodes with the same class label, they may occur more frequently between nodes with different class labels (link-heterogeneity). Or nodes with the same class label do not necessarily have the same type of connectivity across the whole network (class-heterogeneity), e.g. in a network of sexual interactions we may observe links between opposite genders in some parts of the graph and links between the same genders in others. Performing classification in networks with different types of heterogeneity is a hard problem that is made harder still by the fact we do not know a-priori the type or level of heterogeneity. In this work we present two scalable approaches for graph-based semi-supervised learning for the more general case of relational networks. We demonstrate these approaches on synthetic and real-world networks that display different link patterns within and between classes. Compared to state-of-the-art baseline approaches, ours give better classification performance and do so without prior knowledge of how classes interact. In particular, our two-step label propagation algorithm gives consistently good accuracy and precision, while also being highly efficient and can perform classification in networks of over 1.6 million nodes and 30 million edges in around 12 seconds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Collective Inference

Collective inference is widely used to improve classification in network datasets. However, despite recent advances in deep learning and the successes of recurrent neural networks (RNNs), researchers have only just recently begun to study how to apply RNNs to heterogeneous graph and network datasets. There has been recent work on using RNNs for unsupervised learning in networks (e.g., graph clu...

متن کامل

Few-Shot Learning with Graph Neural Networks

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...

متن کامل

Learning from Partially Labeled Data: Unsupervised and Semi-supervised Learning on Graphs and Learning with Distribution Shifting

This thesis focuses on two fundamental machine learning problems: unsupervised learning, where no label information is available, and semi-supervised learning, where a small amount of labels are given in addition to unlabeled data. These problems arise in many real word applications, such as Web analysis and bioinformatics, where a large amount of data is available, but no or only a small amoun...

متن کامل

Relational Classification for Personalized Tag Recommendation

Folksonomy data is relational by nature, and therefore methods that directly exploit these relations are prominent for the tag recommendation problem. Relational methods have been successfully applied to areas in which entities are linked in an explicit manner, like hypertext documents and scientific publications. For approaching the graph-based tag recommendation task of the ECML PKDD Discover...

متن کامل

Iclr 2018 F Ew - S Hot L Earning with G Raph N Eural N Et - Works

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017