Uncertainty Measures for Improving Exemplar-Based Source Separation
نویسندگان
چکیده
This work studies the use of observation uncertainty measures for improving the speech recognition performance of an exemplar-based source separation based front end. To generate the observation uncertainty estimates for the enhanced features, we propose the use of heuristic methods based on the sparse representation of the noisy signal in the exemplar-based source separation algorithm. The effectiveness of the proposed measures is evaluated in a large vocabulary noisy speech recognition task. The best proposed measure achieved relative error reductions up to 18 % over the baseline feature enhancement method without uncertainty measures.
منابع مشابه
Improving Exemplar-based Image Completion methods using Selecting the Optimal Patch
Image completion is one of the subjects in image and video processing which deals with restoration of and filling in damaged regions of images using correct regions. Exemplar-based image completion methods give more pleasant results than pixel-based approaches. In this paper, a new algorithm is proposed to find the most suitable patch in order to fill in the damaged parts. This patch selection ...
متن کاملCalculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملSparse NMF – half-baked or well done?
Non-negative matrix factorization (NMF) has been a popular method for modeling audio signals, in particular for single-channel source separation. An important factor in the success of NMF-based algorithms is the “quality” of the basis functions that are obtained from training data. In order to model rich signals such as speech or wide ranges of non-stationary noises, NMF typically requires usin...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011