Capture and enumeration of mRNA transcripts from single cells using a microfluidic device.

نویسندگان

  • Matthew T Walsh
  • Alexander P Hsiao
  • Ho Suk Lee
  • Zhixia Liu
  • Xiaohua Huang
چکیده

Accurate measurement of RNA transcripts from single cells will enable the precise classification of cell types and characterization of the heterogeneity in cell populations that play key roles in normal cellular physiology and diseases. As a step towards this end, we have developed a microfluidic device and methods for automatic hydrodynamic capture of single mammalian cells and subsequent immobilization and digital counting of polyadenylated mRNA molecules released from the individual cells. Using single-molecule fluorescence imaging, we have demonstrated that polyadenylated mRNA molecules from single HeLa cells can be captured within minutes by hybridization to polydeoxyribothymidine oligonucleotides covalently attached on the glass surface in the device. The total mRNA molecule counts in the individual HeLa cells are found to vary significantly from one another. Our technology opens up the possibility of direct digital enumeration of RNA transcripts from single cells with single-molecule sensitivity using a single integrated microfluidic device.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

Self-Digitization Microfluidic Chip for Absolute Quantification of mRNA in Single Cells

Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small...

متن کامل

High-throughput microfluidic single-cell digital polymerase chain reaction.

Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array c...

متن کامل

Rapid, low-cost and instrument-free CD4+ cell counting for HIV diagnostics in resource-poor settings.

We present a novel, user-friendly and widely autonomous point-of-care diagnostic to enable HIV monitoring in resource-poor regions where the current pandemic is most prevalent. To specifically isolate magnetically tagged CD4+ cells directly from patient blood, the low-cost and disposable microfluidic chip operates by dual-force CD4+ cell magnetophoresis; whereby the interplay of flow and magnet...

متن کامل

High-throughput microfluidic single-cell RT-qPCR.

A long-sought milestone in microfluidics research has been the development of integrated technology for scalable analysis of transcription in single cells. Here we present a fully integrated microfluidic device capable of performing high-precision RT-qPCR measurements of gene expression from hundreds of single cells per run. Our device executes all steps of single-cell processing, including cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 15 14  شماره 

صفحات  -

تاریخ انتشار 2015