Maximizing submodular set functions subject to multiple linear constraints
نویسندگان
چکیده
The concept of submodularity plays a vital role in combinatorial optimization. In particular, many important optimization problems can be cast as submodular maximization problems, including maximum coverage, maximum facility location and max cut in directed/undirected graphs. In this paper we present the first known approximation algorithms for the problem of maximizing a nondecreasing submodular set function subject to multiple linear constraints. Given a d-dimensional budget vector L̄, for some d ≥ 1, and an oracle for a non-decreasing submodular set function f over a universe U , where each element e ∈ U is associated with a d-dimensional cost vector, we seek a subset of elements S ⊆ U whose total cost is at most L̄, such that f(S) is maximized. We develop a framework for maximizing submodular functions subject to d linear constraints that yields a (1− ε)(1− e−1)-approximation to the optimum for any ε > 0, where d > 1 is some constant. Our study is motivated by a variant of the classical maximum coverage problem that we call maximum coverage with multiple packing constraints. We use our framework to obtain the same approximation ratio for this problem. To the best of our knowledge, this is the first time the theoretical bound of 1 − e−1 is (almost) matched for both of these problems.
منابع مشابه
Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMonotone k-Submodular Function Maximization with Size Constraints
A k-submodular function is a generalization of a submodular function, where the input consists of k disjoint subsets, instead of a single subset, of the domain. Many machine learning problems, including influence maximization with k kinds of topics and sensor placement with k kinds of sensors, can be naturally modeled as the problem of maximizing monotone k-submodular functions. In this paper, ...
متن کاملDependent Randomized Rounding for Matroid Polytopes and Applications
Motivated by several applications, we consider the problem of randomly rounding a fractional solutionin a matroid (base) polytope to an integral one. We consider the pipage rounding technique [5, 6, 36] andalso present a new technique, randomized swap rounding. Our main technical results are concentrationbounds for functions of random variables arising from these rounding techniques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009