Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.

نویسندگان

  • H N Chan
  • B A Malomed
  • K W Chow
  • E Ding
چکیده

Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rogue waves for a system of coupled derivative nonlinear Schrӧdinger equations

Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics and plasmas, exhibits RWs only in the regime of modulation instability (MI) of the background. For system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI...

متن کامل

Rogue waves and other solutions of single and coupled Ablowitz-Ladik and nonlinear Schrödinger equations

We provide a simple technique for finding the correspondence between the solutions of AblowitzLadik and nonlinear Schrödinger equations. Even though they belong to different classes, in that one is continuous and one is discrete, there are matching solutions. This fact allows us to discern common features and obtain solutions of the continuous equation from solutions of the discrete equation. W...

متن کامل

A coupled "AB" system: Rogue waves and modulation instabilities.

Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion ...

متن کامل

Modulational instability and rogue waves in shallow water models

It is now well known that the focussing nonlinear Schrödinger equation allows plane waves to be modulationally unstable, and at the same time supports breather solutions which are often invoked as models for rogue waves. This suggests a direct connection between modulation instability and the existence of rogue waves. In this chapter we review this connection for a suite of long wave models, su...

متن کامل

Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation

In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2016