User-guided segmentation for volumetric retinal optical coherence tomography images.

نویسندگان

  • Xin Yin
  • Jennifer R Chao
  • Ruikang K Wang
چکیده

Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Needle Segmentation in Volumetric Optical Coherence Tomography Images for Ophthalmic Microsurgery

Needle segmentation is a fundamental step for needle reconstruction and image-guided surgery. Although there has been success stories in needle segmentation for non-microsurgeries, the methods cannot be directly extended to ophthalmic surgery due to the challenges bounded to required spatial resolution. As the ophthalmic surgery is performed by finer and smaller surgical instruments in micro-st...

متن کامل

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography.

Spectral-domain optical coherence tomography (SD-OCT) provides volumetric images of retinal structures with unprecedented detail. Accurate segmentation algorithms and feature quantification in these images, however, are needed to realize the full potential of SD-OCT. The fully automated segmentation algorithm, FloatingCanvas, serves this purpose and performs a volumetric segmentation of retinal...

متن کامل

Interactive Visualization and Manipulation of Volumetric In-Vivo Retinal Images Acquired with Optical Coherence Tomography By ALFRED

This dissertation presents methods for the efficient visualization and manipulation of volumetric data sets. Primarily considered are the challenges presented by in-vivo retinal images acquired through optical coherence tomography (OCT). These challenges include creating a user experience with a low learning curve for clinicians, adapting methods to work within the limited time available in a c...

متن کامل

Automated 3-D segmentation and analysis of retinal optical coherence tomography images

Optical coherence tomography (OCT) is becoming an increasingly important modality for the noninvasive assessment of a variety of ocular diseases such as glaucoma, diabetic macular edema, and age-related macular degeneration. Even though individual layers of the retina are visible on OCT images, current commercial quantitative assessment is limited to measuring the thickness of only one layer. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 8  شماره 

صفحات  -

تاریخ انتشار 2014