Clustering Agent Optimization Results in Dynamic Scenarios
نویسندگان
چکیده
The application of optimization algorithms to parameter driven simulations and agents has been thoroughly explored in literature. However, classical optimization algorithms do not take into account the fact that simulations normally have dynamic scenarios. This paper analyzes the possibility of using the classical optimization methods, combined with clustering techniques, in order to optimize parameter driven agents, in simulations having dynamic scenarios. This will be accomplished by optimizing the agents in several random static scenarios and clustering the optimum results of each of these optimizations in order to find a set of typical solutions for the agent parametrization problem. These typical solutions can then be used in dynamic scenario simulations as references that will help the agents adapt to scenario changes. The results of this approach show that, in some cases, it is possible to improve the outcome of simulations in dynamic environments while still using the classical methods developed for static scenarios.
منابع مشابه
Clustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملRobust Optimal Desirability Approach for Multiple Responses Optimization with Multiple Productions Scenarios
An optimal desirability function method is proposed to optimize multiple responses in multiple production scenarios, simultaneously. In dynamic environments, changes in production requirements in each condition create different production scenarios. Therefore, in multiple production scenarios like producing in several production lines with different technologies in a factory, various fitted r...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملA Self-organizing Multi-agent System for Online Unsupervised Learning in Complex Dynamic Environments
The task of continuous online unsupervised learning of streaming data in complex dynamic environments under conditions of uncertainty is an NP-hard optimization problem for general metric spaces. This paper describes a computationally efficient adaptive multi-agent approach to continuous online clustering of streaming data, which is originally sensitive to environmental variations and provides ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006