Provenance and age of bacteria-like structures on mid-Palaeozoic plant fossils
نویسندگان
چکیده
Structures, termed microbioids, comforming to bacteria in size and shape (e.g. rods, spheres, chains and clusters of spheres) have been observed by field emission scanning electron microscopy (FE-SEM) on coalified Silurian and Lower Devonian spores, sporangia, cuticles and coprolites. Some were sectioned for transmission electron microscopy. The elemental composition of both microbioids and ‘substrates ’ was investigated using a X-ray microanalysis system. These analyses combined with comparative studies on recent bacteria and cyanobacteria were undertaken to evaluate the biogenicity, nature and age of the microbioids. Spheres with a Si signature (0.03–0.5 mm diameter) and assumed composed of silica are interpreted as artefacts produced abiotically during the extraction procedures. A similar origin is proposed for hollow spheres that are composed of CaF2. These occur singly, in short chains simulating filaments, and in clusters. Considerable differences in size (0.2–2.0 mm diameter) and appearance relate to local variation in the chemical environment during extraction. Spheres (0.2–1.5 mm diameter), that lack a mineral signature, with a framboidal surface ornament and occur within sporangia are identified as by-products of spore development. A biotic origin is also postulated for C-containing rod-shaped structures (>3.1 mm long, <1.4 mm wide), some with collapsed surfaces, although comparisons with living bacteria indicate recent contamination. More elongate rod-shaped microbioids (<8.6 mm long, 1.2 mm wide) have been identified as detrital rutile crystals (TiO2). Minute naviculate structures (<2.2 mm long) resembling diatoms are of unknown origin but are probably composed of thorium hydroxide. Unmineralized filaments of cyanobacterial morphology are recent contaminants. Some of the sporangia and spore masses are partially covered by associations of fragmented sheets, interconnecting strands, rods and spheres that are interpreted as dehydrated biofilms. Being unmineralized they are probably also of recent origin, although they might have survived wild-fire along with the charcoalified mesofossils. Many of the structures illustrated here were initially identified casually as bacteria on the small fossils extracted for biodiversity studies using well-tried, conventional, palaeobotanical techniques. Our subsequent more detailed analyses have shown how such processes can produce artefacts that are morphological analogues of mineralized bacteria, leave residues that mimic bacterial shapes and, despite some efforts such as storage in dilute HCl to eliminate living bacteria, introduce contamination. They reinforce previous concerns that verification of the biogenicity and syngenicity of bacterial-like objects in ancient Earth and extraterrestrial rocks should not only rely on size and morphological look-alikes, but must encompass a thorough understanding of fossilization processes and extraction techniques plus, ideally, other measures of biogenicity (e.g. biomarkers) and syngenicity. Received 21 February 2006, accepted 26 June 2006
منابع مشابه
Sedimentary structures and depositional environment of the Ashin Formation in Nakhlak area, Central Iran
Middle to Upper Triassic (Upper Ladinian to Lower Carnian) deep-sea sedimentary rocks crop out across a large area west of Nakhlak village, Central Iran and have been named Ashin Formation. The up to 304m thick, turbiditic, siliciclastic Ashin Formation consists of alternating turbiditic, thin- and medium-bedded calcareous sandstones, purple, fine-grained volcaniclastic sandstones, and mostly g...
متن کاملConstraining the role of early land plants in Palaeozoic weathering and global cooling
How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land pla...
متن کاملFirst evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2
The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant-fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant...
متن کاملBrood care in a Silurian ostracod.
An exceptionally preserved new ostracod crustacean from the Silurian of Herefordshire, England, preserves eggs and possible juveniles within its carapace, providing an unequivocal and unique view of parental brood care in the invertebrate fossil record. The female fossil is assigned to a new family and superfamily of myodocopids based on its soft-part anatomy. It demonstrates a remarkably conse...
متن کاملThe inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria
Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006